import torch from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from BLIP.models.blip import blip_decoder class BLIPDecoderService: _instance = None _model = None def __new__(cls): if cls._instance is None: cls._instance = super(BLIPDecoderService, cls).__new__(cls) cls.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') cls.image_size = 384 # Load Model model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' cls._model = blip_decoder(pretrained=model_url, image_size=cls.image_size, vit='base') cls._model.eval() cls._model = cls._model.to(cls.device) # Preprocess cls.transform = transforms.Compose([ transforms.Resize((cls.image_size, cls.image_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) return cls._instance def generate_caption(self, pil_image): image = self.transform(pil_image).unsqueeze(0).to(self.device) with torch.no_grad(): # Beam search as per your requirement caption = self._model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5) return caption[0]