| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- import torch
- from torch.utils.data import DataLoader
- from torchvision import transforms
- from torchvision.transforms.functional import InterpolationMode
- from data.coco_karpathy_dataset import coco_karpathy_train, coco_karpathy_caption_eval, coco_karpathy_retrieval_eval
- from data.nocaps_dataset import nocaps_eval
- from data.flickr30k_dataset import flickr30k_train, flickr30k_retrieval_eval
- from data.vqa_dataset import vqa_dataset
- from data.nlvr_dataset import nlvr_dataset
- from data.pretrain_dataset import pretrain_dataset
- from transform.randaugment import RandomAugment
- def create_dataset(dataset, config, min_scale=0.5):
-
- normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
- transform_train = transforms.Compose([
- transforms.RandomResizedCrop(config['image_size'],scale=(min_scale, 1.0),interpolation=InterpolationMode.BICUBIC),
- transforms.RandomHorizontalFlip(),
- RandomAugment(2,5,isPIL=True,augs=['Identity','AutoContrast','Brightness','Sharpness','Equalize',
- 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
- transforms.ToTensor(),
- normalize,
- ])
- transform_test = transforms.Compose([
- transforms.Resize((config['image_size'],config['image_size']),interpolation=InterpolationMode.BICUBIC),
- transforms.ToTensor(),
- normalize,
- ])
-
- if dataset=='pretrain':
- dataset = pretrain_dataset(config['train_file'], config['laion_path'], transform_train)
- return dataset
-
- elif dataset=='caption_coco':
- train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'], prompt=config['prompt'])
- val_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'val')
- test_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'test')
- return train_dataset, val_dataset, test_dataset
-
- elif dataset=='nocaps':
- val_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'val')
- test_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'test')
- return val_dataset, test_dataset
-
- elif dataset=='retrieval_coco':
- train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'])
- val_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val')
- test_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test')
- return train_dataset, val_dataset, test_dataset
-
- elif dataset=='retrieval_flickr':
- train_dataset = flickr30k_train(transform_train, config['image_root'], config['ann_root'])
- val_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val')
- test_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test')
- return train_dataset, val_dataset, test_dataset
-
- elif dataset=='vqa':
- train_dataset = vqa_dataset(transform_train, config['ann_root'], config['vqa_root'], config['vg_root'],
- train_files = config['train_files'], split='train')
- test_dataset = vqa_dataset(transform_test, config['ann_root'], config['vqa_root'], config['vg_root'], split='test')
- return train_dataset, test_dataset
-
- elif dataset=='nlvr':
- train_dataset = nlvr_dataset(transform_train, config['image_root'], config['ann_root'],'train')
- val_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'val')
- test_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'test')
- return train_dataset, val_dataset, test_dataset
-
-
- def create_sampler(datasets, shuffles, num_tasks, global_rank):
- samplers = []
- for dataset,shuffle in zip(datasets,shuffles):
- sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank, shuffle=shuffle)
- samplers.append(sampler)
- return samplers
- def create_loader(datasets, samplers, batch_size, num_workers, is_trains, collate_fns):
- loaders = []
- for dataset,sampler,bs,n_worker,is_train,collate_fn in zip(datasets,samplers,batch_size,num_workers,is_trains,collate_fns):
- if is_train:
- shuffle = (sampler is None)
- drop_last = True
- else:
- shuffle = False
- drop_last = False
- loader = DataLoader(
- dataset,
- batch_size=bs,
- num_workers=n_worker,
- pin_memory=True,
- sampler=sampler,
- shuffle=shuffle,
- collate_fn=collate_fn,
- drop_last=drop_last,
- )
- loaders.append(loader)
- return loaders
|