| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- import os
- import json
- import random
- from torch.utils.data import Dataset
- from torchvision.datasets.utils import download_url
- from PIL import Image
- from data.utils import pre_caption
- class nlvr_dataset(Dataset):
- def __init__(self, transform, image_root, ann_root, split):
- '''
- image_root (string): Root directory of images
- ann_root (string): directory to store the annotation file
- split (string): train, val or test
- '''
- urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json',
- 'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json',
- 'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'}
- filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'}
-
- download_url(urls[split],ann_root)
- self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
-
- self.transform = transform
- self.image_root = image_root
-
- def __len__(self):
- return len(self.annotation)
-
- def __getitem__(self, index):
-
- ann = self.annotation[index]
-
- image0_path = os.path.join(self.image_root,ann['images'][0])
- image0 = Image.open(image0_path).convert('RGB')
- image0 = self.transform(image0)
-
- image1_path = os.path.join(self.image_root,ann['images'][1])
- image1 = Image.open(image1_path).convert('RGB')
- image1 = self.transform(image1)
- sentence = pre_caption(ann['sentence'], 40)
-
- if ann['label']=='True':
- label = 1
- else:
- label = 0
-
- words = sentence.split(' ')
-
- if 'left' not in words and 'right' not in words:
- if random.random()<0.5:
- return image0, image1, sentence, label
- else:
- return image1, image0, sentence, label
- else:
- if random.random()<0.5:
- return image0, image1, sentence, label
- else:
- new_words = []
- for word in words:
- if word=='left':
- new_words.append('right')
- elif word=='right':
- new_words.append('left')
- else:
- new_words.append(word)
-
- sentence = ' '.join(new_words)
- return image1, image0, sentence, label
-
-
-
|