| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- '''
- * Copyright (c) 2022, salesforce.com, inc.
- * All rights reserved.
- * SPDX-License-Identifier: BSD-3-Clause
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
- * By Junnan Li
- '''
- import argparse
- import os
- import ruamel_yaml as yaml
- import numpy as np
- import random
- import time
- import datetime
- import json
- from pathlib import Path
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.backends.cudnn as cudnn
- import torch.distributed as dist
- from torch.utils.data import DataLoader
- from models.blip import blip_decoder
- import utils
- from data import create_dataset, create_sampler, create_loader
- from data.utils import save_result
- @torch.no_grad()
- def evaluate(model, data_loader, device, config):
- # evaluate
- model.eval()
-
- metric_logger = utils.MetricLogger(delimiter=" ")
- header = 'Evaluation:'
- print_freq = 10
- result = []
- for image, image_id in metric_logger.log_every(data_loader, print_freq, header):
-
- image = image.to(device)
-
- captions = model.generate(image, sample=False, num_beams=config['num_beams'], max_length=config['max_length'],
- min_length=config['min_length'], repetition_penalty=1.1)
-
- for caption, img_id in zip(captions, image_id):
- result.append({"image_id": img_id.item(), "caption": caption})
-
- return result
- def main(args, config):
- utils.init_distributed_mode(args)
-
- device = torch.device(args.device)
- # fix the seed for reproducibility
- seed = args.seed + utils.get_rank()
- torch.manual_seed(seed)
- np.random.seed(seed)
- random.seed(seed)
- cudnn.benchmark = True
- #### Dataset ####
- print("Creating captioning dataset")
- val_dataset, test_dataset = create_dataset('nocaps', config)
- if args.distributed:
- num_tasks = utils.get_world_size()
- global_rank = utils.get_rank()
- samplers = create_sampler([val_dataset,test_dataset], [False,False], num_tasks, global_rank)
- else:
- samplers = [None,None]
-
- val_loader, test_loader = create_loader([val_dataset, test_dataset],samplers,
- batch_size=[config['batch_size']]*2,num_workers=[4,4],
- is_trains=[False, False], collate_fns=[None,None])
- #### Model ####
- print("Creating model")
- model = blip_decoder(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
- prompt=config['prompt'])
- model = model.to(device)
-
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
-
- val_result = evaluate(model_without_ddp, val_loader, device, config)
- val_result_file = save_result(val_result, args.result_dir, 'val', remove_duplicate='image_id')
- test_result = evaluate(model_without_ddp, test_loader, device, config)
- test_result_file = save_result(test_result, args.result_dir, 'test', remove_duplicate='image_id')
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--config', default='./configs/nocaps.yaml')
- parser.add_argument('--output_dir', default='output/NoCaps')
- parser.add_argument('--device', default='cuda')
- parser.add_argument('--seed', default=42, type=int)
- parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
- parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
- parser.add_argument('--distributed', default=True, type=bool)
- args = parser.parse_args()
- config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
- args.result_dir = os.path.join(args.output_dir, 'result')
- Path(args.output_dir).mkdir(parents=True, exist_ok=True)
- Path(args.result_dir).mkdir(parents=True, exist_ok=True)
-
- yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
-
- main(args, config)
|