| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- from models.med import BertConfig, BertModel
- from transformers import BertTokenizer
- import torch
- from torch import nn
- import torch.nn.functional as F
- from models.blip import create_vit, init_tokenizer, load_checkpoint
- class BLIP_Retrieval(nn.Module):
- def __init__(self,
- med_config = 'configs/med_config.json',
- image_size = 384,
- vit = 'base',
- vit_grad_ckpt = False,
- vit_ckpt_layer = 0,
- embed_dim = 256,
- queue_size = 57600,
- momentum = 0.995,
- negative_all_rank = False,
- ):
- """
- Args:
- med_config (str): path for the mixture of encoder-decoder model's configuration file
- image_size (int): input image size
- vit (str): model size of vision transformer
- """
- super().__init__()
-
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
- self.tokenizer = init_tokenizer()
- med_config = BertConfig.from_json_file(med_config)
- med_config.encoder_width = vision_width
- self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
- text_width = self.text_encoder.config.hidden_size
-
- self.vision_proj = nn.Linear(vision_width, embed_dim)
- self.text_proj = nn.Linear(text_width, embed_dim)
- self.itm_head = nn.Linear(text_width, 2)
-
- # create momentum encoders
- self.visual_encoder_m, vision_width = create_vit(vit,image_size)
- self.vision_proj_m = nn.Linear(vision_width, embed_dim)
- self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)
- self.text_proj_m = nn.Linear(text_width, embed_dim)
-
- self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
- [self.vision_proj,self.vision_proj_m],
- [self.text_encoder,self.text_encoder_m],
- [self.text_proj,self.text_proj_m],
- ]
- self.copy_params()
- # create the queue
- self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
- self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
- self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
- self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
- self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
- self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
-
- self.queue_size = queue_size
- self.momentum = momentum
- self.temp = nn.Parameter(0.07*torch.ones([]))
-
- self.negative_all_rank = negative_all_rank
-
-
- def forward(self, image, caption, alpha, idx):
- with torch.no_grad():
- self.temp.clamp_(0.001,0.5)
-
- image_embeds = self.visual_encoder(image)
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
- image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
-
- text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
- return_tensors="pt").to(image.device)
-
- text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
- return_dict = True, mode = 'text')
- text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
-
- ###============== Image-text Contrastive Learning ===================###
- idx = idx.view(-1,1)
- idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
- pos_idx = torch.eq(idx, idx_all).float()
- sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
-
- # get momentum features
- with torch.no_grad():
- self._momentum_update()
- image_embeds_m = self.visual_encoder_m(image)
- image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
- image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
-
- text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
- return_dict = True, mode = 'text')
- text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
- text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
- sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
- sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
- sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
- sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
- sim_i2t = image_feat @ text_feat_m_all / self.temp
- sim_t2i = text_feat @ image_feat_m_all / self.temp
-
- loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
- loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
- loss_ita = (loss_i2t+loss_t2i)/2
-
- idxs = concat_all_gather(idx)
- self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
- ###============== Image-text Matching ===================###
- encoder_input_ids = text.input_ids.clone()
- encoder_input_ids[:,0] = self.tokenizer.enc_token_id
- # forward the positve image-text pair
- bs = image.size(0)
- output_pos = self.text_encoder(encoder_input_ids,
- attention_mask = text.attention_mask,
- encoder_hidden_states = image_embeds,
- encoder_attention_mask = image_atts,
- return_dict = True,
- )
-
-
- if self.negative_all_rank:
- # compute sample similarity
- with torch.no_grad():
- mask = torch.eq(idx, idxs.t())
- image_feat_world = concat_all_gather(image_feat)
- text_feat_world = concat_all_gather(text_feat)
- sim_i2t = image_feat @ text_feat_world.t() / self.temp
- sim_t2i = text_feat @ image_feat_world.t() / self.temp
- weights_i2t = F.softmax(sim_i2t,dim=1)
- weights_i2t.masked_fill_(mask, 0)
- weights_t2i = F.softmax(sim_t2i,dim=1)
- weights_t2i.masked_fill_(mask, 0)
- image_embeds_world = all_gather_with_grad(image_embeds)
- # select a negative image (from all ranks) for each text
- image_embeds_neg = []
- for b in range(bs):
- neg_idx = torch.multinomial(weights_t2i[b], 1).item()
- image_embeds_neg.append(image_embeds_world[neg_idx])
- image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
- # select a negative text (from all ranks) for each image
- input_ids_world = concat_all_gather(encoder_input_ids)
- att_mask_world = concat_all_gather(text.attention_mask)
- text_ids_neg = []
- text_atts_neg = []
- for b in range(bs):
- neg_idx = torch.multinomial(weights_i2t[b], 1).item()
- text_ids_neg.append(input_ids_world[neg_idx])
- text_atts_neg.append(att_mask_world[neg_idx])
-
- else:
- with torch.no_grad():
- mask = torch.eq(idx, idx.t())
-
- sim_i2t = image_feat @ text_feat.t() / self.temp
- sim_t2i = text_feat @ image_feat.t() / self.temp
- weights_i2t = F.softmax(sim_i2t,dim=1)
- weights_i2t.masked_fill_(mask, 0)
- weights_t2i = F.softmax(sim_t2i,dim=1)
- weights_t2i.masked_fill_(mask, 0)
- # select a negative image (from same rank) for each text
- image_embeds_neg = []
- for b in range(bs):
- neg_idx = torch.multinomial(weights_t2i[b], 1).item()
- image_embeds_neg.append(image_embeds[neg_idx])
- image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
- # select a negative text (from same rank) for each image
- text_ids_neg = []
- text_atts_neg = []
- for b in range(bs):
- neg_idx = torch.multinomial(weights_i2t[b], 1).item()
- text_ids_neg.append(encoder_input_ids[neg_idx])
- text_atts_neg.append(text.attention_mask[neg_idx])
-
- text_ids_neg = torch.stack(text_ids_neg,dim=0)
- text_atts_neg = torch.stack(text_atts_neg,dim=0)
- text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
- text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
- image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
- image_atts_all = torch.cat([image_atts,image_atts],dim=0)
- output_neg = self.text_encoder(text_ids_all,
- attention_mask = text_atts_all,
- encoder_hidden_states = image_embeds_all,
- encoder_attention_mask = image_atts_all,
- return_dict = True,
- )
-
- vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
- vl_output = self.itm_head(vl_embeddings)
- itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
- dim=0).to(image.device)
- loss_itm = F.cross_entropy(vl_output, itm_labels)
- return loss_ita, loss_itm
-
- @torch.no_grad()
- def copy_params(self):
- for model_pair in self.model_pairs:
- for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
- param_m.data.copy_(param.data) # initialize
- param_m.requires_grad = False # not update by gradient
-
- @torch.no_grad()
- def _momentum_update(self):
- for model_pair in self.model_pairs:
- for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
- param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
-
-
- @torch.no_grad()
- def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
- # gather keys before updating queue
- image_feats = concat_all_gather(image_feat)
- text_feats = concat_all_gather(text_feat)
-
- batch_size = image_feats.shape[0]
- ptr = int(self.ptr_queue)
- assert self.queue_size % batch_size == 0 # for simplicity
- # replace the keys at ptr (dequeue and enqueue)
- self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
- self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
- self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
- ptr = (ptr + batch_size) % self.queue_size # move pointer
- self.ptr_queue[0] = ptr
- def blip_retrieval(pretrained='',**kwargs):
- model = BLIP_Retrieval(**kwargs)
- if pretrained:
- model,msg = load_checkpoint(model,pretrained)
- print("missing keys:")
- print(msg.missing_keys)
- return model
- @torch.no_grad()
- def concat_all_gather(tensor):
- """
- Performs all_gather operation on the provided tensors.
- *** Warning ***: torch.distributed.all_gather has no gradient.
- """
- tensors_gather = [torch.ones_like(tensor)
- for _ in range(torch.distributed.get_world_size())]
- torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
- output = torch.cat(tensors_gather, dim=0)
- return output
- class GatherLayer(torch.autograd.Function):
- """
- Gather tensors from all workers with support for backward propagation:
- This implementation does not cut the gradients as torch.distributed.all_gather does.
- """
- @staticmethod
- def forward(ctx, x):
- output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
- torch.distributed.all_gather(output, x)
- return tuple(output)
- @staticmethod
- def backward(ctx, *grads):
- all_gradients = torch.stack(grads)
- torch.distributed.all_reduce(all_gradients)
- return all_gradients[torch.distributed.get_rank()]
- def all_gather_with_grad(tensors):
- """
- Performs all_gather operation on the provided tensors.
- Graph remains connected for backward grad computation.
- """
- # Queue the gathered tensors
- world_size = torch.distributed.get_world_size()
- # There is no need for reduction in the single-proc case
- if world_size == 1:
- return tensors
- tensor_all = GatherLayer.apply(tensors)
- return torch.cat(tensor_all, dim=0)
|