| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- '''
- * Copyright (c) 2022, salesforce.com, inc.
- * All rights reserved.
- * SPDX-License-Identifier: BSD-3-Clause
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
- * By Junnan Li
- * Based on timm code base
- * https://github.com/rwightman/pytorch-image-models/tree/master/timm
- '''
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from functools import partial
- from timm.models.vision_transformer import _cfg, PatchEmbed
- from timm.models.registry import register_model
- from timm.models.layers import trunc_normal_, DropPath
- from timm.models.helpers import named_apply, adapt_input_conv
- from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
- class Mlp(nn.Module):
- """ MLP as used in Vision Transformer, MLP-Mixer and related networks
- """
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
- class Attention(nn.Module):
- def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
- self.scale = qk_scale or head_dim ** -0.5
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- self.attn_gradients = None
- self.attention_map = None
-
- def save_attn_gradients(self, attn_gradients):
- self.attn_gradients = attn_gradients
-
- def get_attn_gradients(self):
- return self.attn_gradients
-
- def save_attention_map(self, attention_map):
- self.attention_map = attention_map
-
- def get_attention_map(self):
- return self.attention_map
-
- def forward(self, x, register_hook=False):
- B, N, C = x.shape
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
- attn = (q @ k.transpose(-2, -1)) * self.scale
- attn = attn.softmax(dim=-1)
- attn = self.attn_drop(attn)
-
- if register_hook:
- self.save_attention_map(attn)
- attn.register_hook(self.save_attn_gradients)
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class Block(nn.Module):
- def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
- drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
- super().__init__()
- self.norm1 = norm_layer(dim)
- self.attn = Attention(
- dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
- if use_grad_checkpointing:
- self.attn = checkpoint_wrapper(self.attn)
- self.mlp = checkpoint_wrapper(self.mlp)
- def forward(self, x, register_hook=False):
- x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- return x
-
- class VisionTransformer(nn.Module):
- """ Vision Transformer
- A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
- https://arxiv.org/abs/2010.11929
- """
- def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
- num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
- use_grad_checkpointing=False, ckpt_layer=0):
- """
- Args:
- img_size (int, tuple): input image size
- patch_size (int, tuple): patch size
- in_chans (int): number of input channels
- num_classes (int): number of classes for classification head
- embed_dim (int): embedding dimension
- depth (int): depth of transformer
- num_heads (int): number of attention heads
- mlp_ratio (int): ratio of mlp hidden dim to embedding dim
- qkv_bias (bool): enable bias for qkv if True
- qk_scale (float): override default qk scale of head_dim ** -0.5 if set
- representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
- drop_rate (float): dropout rate
- attn_drop_rate (float): attention dropout rate
- drop_path_rate (float): stochastic depth rate
- norm_layer: (nn.Module): normalization layer
- """
- super().__init__()
- self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
- norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
- self.patch_embed = PatchEmbed(
- img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
- num_patches = self.patch_embed.num_patches
- self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
- self.pos_drop = nn.Dropout(p=drop_rate)
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
- self.blocks = nn.ModuleList([
- Block(
- dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
- use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
- )
- for i in range(depth)])
- self.norm = norm_layer(embed_dim)
- trunc_normal_(self.pos_embed, std=.02)
- trunc_normal_(self.cls_token, std=.02)
- self.apply(self._init_weights)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight, std=.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
- @torch.jit.ignore
- def no_weight_decay(self):
- return {'pos_embed', 'cls_token'}
- def forward(self, x, register_blk=-1):
- B = x.shape[0]
- x = self.patch_embed(x)
- cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
- x = torch.cat((cls_tokens, x), dim=1)
-
- x = x + self.pos_embed[:,:x.size(1),:]
- x = self.pos_drop(x)
- for i,blk in enumerate(self.blocks):
- x = blk(x, register_blk==i)
- x = self.norm(x)
-
- return x
- @torch.jit.ignore()
- def load_pretrained(self, checkpoint_path, prefix=''):
- _load_weights(self, checkpoint_path, prefix)
-
- @torch.no_grad()
- def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
- """ Load weights from .npz checkpoints for official Google Brain Flax implementation
- """
- import numpy as np
- def _n2p(w, t=True):
- if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
- w = w.flatten()
- if t:
- if w.ndim == 4:
- w = w.transpose([3, 2, 0, 1])
- elif w.ndim == 3:
- w = w.transpose([2, 0, 1])
- elif w.ndim == 2:
- w = w.transpose([1, 0])
- return torch.from_numpy(w)
- w = np.load(checkpoint_path)
- if not prefix and 'opt/target/embedding/kernel' in w:
- prefix = 'opt/target/'
- if hasattr(model.patch_embed, 'backbone'):
- # hybrid
- backbone = model.patch_embed.backbone
- stem_only = not hasattr(backbone, 'stem')
- stem = backbone if stem_only else backbone.stem
- stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
- stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
- stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
- if not stem_only:
- for i, stage in enumerate(backbone.stages):
- for j, block in enumerate(stage.blocks):
- bp = f'{prefix}block{i + 1}/unit{j + 1}/'
- for r in range(3):
- getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
- getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
- getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
- if block.downsample is not None:
- block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
- block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
- block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
- embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
- else:
- embed_conv_w = adapt_input_conv(
- model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
- model.patch_embed.proj.weight.copy_(embed_conv_w)
- model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
- model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
- pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
- if pos_embed_w.shape != model.pos_embed.shape:
- pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
- pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
- model.pos_embed.copy_(pos_embed_w)
- model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
- model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
- # if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
- # model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
- # model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
- # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
- # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
- # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
- for i, block in enumerate(model.blocks.children()):
- block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
- mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
- block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
- block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
- block.attn.qkv.weight.copy_(torch.cat([
- _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
- block.attn.qkv.bias.copy_(torch.cat([
- _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
- block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
- block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
- for r in range(2):
- getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
- getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
- block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
- block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
-
- def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
- # interpolate position embedding
- embedding_size = pos_embed_checkpoint.shape[-1]
- num_patches = visual_encoder.patch_embed.num_patches
- num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
- # height (== width) for the checkpoint position embedding
- orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
- # height (== width) for the new position embedding
- new_size = int(num_patches ** 0.5)
- if orig_size!=new_size:
- # class_token and dist_token are kept unchanged
- extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
- # only the position tokens are interpolated
- pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
- pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
- pos_tokens = torch.nn.functional.interpolate(
- pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
- pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
- new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
- print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
-
- return new_pos_embed
- else:
- return pos_embed_checkpoint
|