| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- '''
- * Copyright (c) 2022, salesforce.com, inc.
- * All rights reserved.
- * SPDX-License-Identifier: BSD-3-Clause
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
- * By Junnan Li
- '''
- import argparse
- import os
- import ruamel_yaml as yaml
- import numpy as np
- import random
- import time
- import datetime
- import json
- from pathlib import Path
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.backends.cudnn as cudnn
- import torch.distributed as dist
- from torch.utils.data import DataLoader
- from models.blip import blip_decoder
- import utils
- from utils import cosine_lr_schedule
- from data import create_dataset, create_sampler, create_loader
- from data.utils import save_result, coco_caption_eval
- def train(model, data_loader, optimizer, epoch, device):
- # train
- model.train()
-
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
- header = 'Train Caption Epoch: [{}]'.format(epoch)
- print_freq = 50
- for i, (image, caption, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
- image = image.to(device)
-
- loss = model(image, caption)
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- metric_logger.update(loss=loss.item())
- metric_logger.update(lr=optimizer.param_groups[0]["lr"])
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger.global_avg())
- return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
- @torch.no_grad()
- def evaluate(model, data_loader, device, config):
- # evaluate
- model.eval()
-
- metric_logger = utils.MetricLogger(delimiter=" ")
- header = 'Caption generation:'
- print_freq = 10
- result = []
- for image, image_id in metric_logger.log_every(data_loader, print_freq, header):
-
- image = image.to(device)
-
- captions = model.generate(image, sample=False, num_beams=config['num_beams'], max_length=config['max_length'],
- min_length=config['min_length'])
-
- for caption, img_id in zip(captions, image_id):
- result.append({"image_id": img_id.item(), "caption": caption})
-
- return result
- def main(args, config):
- utils.init_distributed_mode(args)
-
- device = torch.device(args.device)
- # fix the seed for reproducibility
- seed = args.seed + utils.get_rank()
- torch.manual_seed(seed)
- np.random.seed(seed)
- random.seed(seed)
- cudnn.benchmark = True
- #### Dataset ####
- print("Creating captioning dataset")
- train_dataset, val_dataset, test_dataset = create_dataset('caption_coco', config)
- if args.distributed:
- num_tasks = utils.get_world_size()
- global_rank = utils.get_rank()
- samplers = create_sampler([train_dataset,val_dataset,test_dataset], [True,False,False], num_tasks, global_rank)
- else:
- samplers = [None, None, None]
-
- train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset],samplers,
- batch_size=[config['batch_size']]*3,num_workers=[4,4,4],
- is_trains=[True, False, False], collate_fns=[None,None,None])
- #### Model ####
- print("Creating model")
- model = blip_decoder(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
- vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
- prompt=config['prompt'])
- model = model.to(device)
-
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
-
- optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
-
- best = 0
- best_epoch = 0
- print("Start training")
- start_time = time.time()
- for epoch in range(0, config['max_epoch']):
- if not args.evaluate:
- if args.distributed:
- train_loader.sampler.set_epoch(epoch)
-
- cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
-
- train_stats = train(model, train_loader, optimizer, epoch, device)
-
- val_result = evaluate(model_without_ddp, val_loader, device, config)
- val_result_file = save_result(val_result, args.result_dir, 'val_epoch%d'%epoch, remove_duplicate='image_id')
-
- test_result = evaluate(model_without_ddp, test_loader, device, config)
- test_result_file = save_result(test_result, args.result_dir, 'test_epoch%d'%epoch, remove_duplicate='image_id')
- if utils.is_main_process():
- coco_val = coco_caption_eval(config['coco_gt_root'],val_result_file,'val')
- coco_test = coco_caption_eval(config['coco_gt_root'],test_result_file,'test')
-
- if args.evaluate:
- log_stats = {**{f'val_{k}': v for k, v in coco_val.eval.items()},
- **{f'test_{k}': v for k, v in coco_test.eval.items()},
- }
- with open(os.path.join(args.output_dir, "evaluate.txt"),"a") as f:
- f.write(json.dumps(log_stats) + "\n")
- else:
- save_obj = {
- 'model': model_without_ddp.state_dict(),
- 'optimizer': optimizer.state_dict(),
- 'config': config,
- 'epoch': epoch,
- }
- if coco_val.eval['CIDEr'] + coco_val.eval['Bleu_4'] > best:
- best = coco_val.eval['CIDEr'] + coco_val.eval['Bleu_4']
- best_epoch = epoch
- torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
-
- log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
- **{f'val_{k}': v for k, v in coco_val.eval.items()},
- **{f'test_{k}': v for k, v in coco_test.eval.items()},
- 'epoch': epoch,
- 'best_epoch': best_epoch,
- }
- with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
- f.write(json.dumps(log_stats) + "\n")
-
- if args.evaluate:
- break
- dist.barrier()
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print('Training time {}'.format(total_time_str))
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--config', default='./configs/caption_coco.yaml')
- parser.add_argument('--output_dir', default='output/Caption_coco')
- parser.add_argument('--evaluate', action='store_true')
- parser.add_argument('--device', default='cuda')
- parser.add_argument('--seed', default=42, type=int)
- parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
- parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
- parser.add_argument('--distributed', default=True, type=bool)
- args = parser.parse_args()
- config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
- args.result_dir = os.path.join(args.output_dir, 'result')
- Path(args.output_dir).mkdir(parents=True, exist_ok=True)
- Path(args.result_dir).mkdir(parents=True, exist_ok=True)
-
- yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
-
- main(args, config)
|