| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- '''
- * Copyright (c) 2022, salesforce.com, inc.
- * All rights reserved.
- * SPDX-License-Identifier: BSD-3-Clause
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
- * By Junnan Li
- '''
- import argparse
- import os
- import ruamel_yaml as yaml
- import numpy as np
- import random
- import time
- import datetime
- import json
- from pathlib import Path
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.backends.cudnn as cudnn
- import torch.distributed as dist
- from torch.utils.data import DataLoader
- from models.blip_retrieval import blip_retrieval
- import utils
- from utils import cosine_lr_schedule
- from data import create_dataset, create_sampler, create_loader
- def train(model, data_loader, optimizer, epoch, device, config):
- # train
- model.train()
-
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
- metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
- header = 'Train Epoch: [{}]'.format(epoch)
- print_freq = 50
- for i,(image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
- image = image.to(device,non_blocking=True)
- idx = idx.to(device,non_blocking=True)
-
- if epoch>0:
- alpha = config['alpha']
- else:
- alpha = config['alpha']*min(1,i/len(data_loader))
- loss_ita, loss_itm = model(image, caption, alpha=alpha, idx=idx)
- loss = loss_ita + loss_itm
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- metric_logger.update(loss_itm=loss_itm.item())
- metric_logger.update(loss_ita=loss_ita.item())
- metric_logger.update(lr=optimizer.param_groups[0]["lr"])
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger.global_avg())
- return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
- @torch.no_grad()
- def evaluation(model, data_loader, device, config):
- # test
- model.eval()
-
- metric_logger = utils.MetricLogger(delimiter=" ")
- header = 'Evaluation:'
-
- print('Computing features for evaluation...')
- start_time = time.time()
- texts = data_loader.dataset.text
- num_text = len(texts)
- text_bs = 256
- text_ids = []
- text_embeds = []
- text_atts = []
- for i in range(0, num_text, text_bs):
- text = texts[i: min(num_text, i+text_bs)]
- text_input = model.tokenizer(text, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(device)
- text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask, mode='text')
- text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:,0,:]))
- text_embeds.append(text_embed)
- text_ids.append(text_input.input_ids)
- text_atts.append(text_input.attention_mask)
-
- text_embeds = torch.cat(text_embeds,dim=0)
- text_ids = torch.cat(text_ids,dim=0)
- text_atts = torch.cat(text_atts,dim=0)
- text_ids[:,0] = model.tokenizer.enc_token_id
-
- image_feats = []
- image_embeds = []
- for image, img_id in data_loader:
- image = image.to(device)
- image_feat = model.visual_encoder(image)
- image_embed = model.vision_proj(image_feat[:,0,:])
- image_embed = F.normalize(image_embed,dim=-1)
-
- image_feats.append(image_feat.cpu())
- image_embeds.append(image_embed)
-
- image_feats = torch.cat(image_feats,dim=0)
- image_embeds = torch.cat(image_embeds,dim=0)
-
- sims_matrix = image_embeds @ text_embeds.t()
- score_matrix_i2t = torch.full((len(data_loader.dataset.image),len(texts)),-100.0).to(device)
-
- num_tasks = utils.get_world_size()
- rank = utils.get_rank()
- step = sims_matrix.size(0)//num_tasks + 1
- start = rank*step
- end = min(sims_matrix.size(0),start+step)
- for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
- topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
- encoder_output = image_feats[start+i].repeat(config['k_test'],1,1).to(device)
- encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device)
- output = model.text_encoder(text_ids[topk_idx],
- attention_mask = text_atts[topk_idx],
- encoder_hidden_states = encoder_output,
- encoder_attention_mask = encoder_att,
- return_dict = True,
- )
- score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
- score_matrix_i2t[start+i,topk_idx] = score + topk_sim
-
- sims_matrix = sims_matrix.t()
- score_matrix_t2i = torch.full((len(texts),len(data_loader.dataset.image)),-100.0).to(device)
-
- step = sims_matrix.size(0)//num_tasks + 1
- start = rank*step
- end = min(sims_matrix.size(0),start+step)
-
- for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
-
- topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
- encoder_output = image_feats[topk_idx].to(device)
- encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device)
- output = model.text_encoder(text_ids[start+i].repeat(config['k_test'],1),
- attention_mask = text_atts[start+i].repeat(config['k_test'],1),
- encoder_hidden_states = encoder_output,
- encoder_attention_mask = encoder_att,
- return_dict = True,
- )
- score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
- score_matrix_t2i[start+i,topk_idx] = score + topk_sim
- if args.distributed:
- dist.barrier()
- torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM)
- torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM)
-
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print('Evaluation time {}'.format(total_time_str))
- return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
-
- @torch.no_grad()
- def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
-
- #Images->Text
- ranks = np.zeros(scores_i2t.shape[0])
- for index,score in enumerate(scores_i2t):
- inds = np.argsort(score)[::-1]
- # Score
- rank = 1e20
- for i in img2txt[index]:
- tmp = np.where(inds == i)[0][0]
- if tmp < rank:
- rank = tmp
- ranks[index] = rank
- # Compute metrics
- tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
- tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
- tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
-
- #Text->Images
- ranks = np.zeros(scores_t2i.shape[0])
-
- for index,score in enumerate(scores_t2i):
- inds = np.argsort(score)[::-1]
- ranks[index] = np.where(inds == txt2img[index])[0][0]
- # Compute metrics
- ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
- ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
- ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
- tr_mean = (tr1 + tr5 + tr10) / 3
- ir_mean = (ir1 + ir5 + ir10) / 3
- r_mean = (tr_mean + ir_mean) / 2
- eval_result = {'txt_r1': tr1,
- 'txt_r5': tr5,
- 'txt_r10': tr10,
- 'txt_r_mean': tr_mean,
- 'img_r1': ir1,
- 'img_r5': ir5,
- 'img_r10': ir10,
- 'img_r_mean': ir_mean,
- 'r_mean': r_mean}
- return eval_result
- def main(args, config):
- utils.init_distributed_mode(args)
-
- device = torch.device(args.device)
- # fix the seed for reproducibility
- seed = args.seed + utils.get_rank()
- torch.manual_seed(seed)
- np.random.seed(seed)
- random.seed(seed)
- cudnn.benchmark = True
- #### Dataset ####
- print("Creating retrieval dataset")
- train_dataset, val_dataset, test_dataset = create_dataset('retrieval_%s'%config['dataset'], config)
- if args.distributed:
- num_tasks = utils.get_world_size()
- global_rank = utils.get_rank()
- samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None, None]
- else:
- samplers = [None, None, None]
-
- train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset],samplers,
- batch_size=[config['batch_size_train']]+[config['batch_size_test']]*2,
- num_workers=[4,4,4],
- is_trains=[True, False, False],
- collate_fns=[None,None,None])
-
- #### Model ####
- print("Creating model")
- model = blip_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
- vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
- queue_size=config['queue_size'], negative_all_rank=config['negative_all_rank'])
- model = model.to(device)
-
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
- optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
-
- best = 0
- best_epoch = 0
- print("Start training")
- start_time = time.time()
- for epoch in range(0, config['max_epoch']):
- if not args.evaluate:
- if args.distributed:
- train_loader.sampler.set_epoch(epoch)
-
- cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
-
- train_stats = train(model, train_loader, optimizer, epoch, device, config)
-
- score_val_i2t, score_val_t2i, = evaluation(model_without_ddp, val_loader, device, config)
- score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, device, config)
-
- if utils.is_main_process():
-
- val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt)
- print(val_result)
-
- if val_result['r_mean']>best:
- save_obj = {
- 'model': model_without_ddp.state_dict(),
- 'optimizer': optimizer.state_dict(),
- 'config': config,
- 'epoch': epoch,
- }
- torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
- best = val_result['r_mean']
- best_epoch = epoch
-
- test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt)
- print(test_result)
-
- if args.evaluate:
- log_stats = {**{f'val_{k}': v for k, v in val_result.items()},
- **{f'test_{k}': v for k, v in test_result.items()},
- }
- with open(os.path.join(args.output_dir, "evaluate.txt"),"a") as f:
- f.write(json.dumps(log_stats) + "\n")
- else:
- log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
- **{f'val_{k}': v for k, v in val_result.items()},
- **{f'test_{k}': v for k, v in test_result.items()},
- 'epoch': epoch,
- 'best_epoch': best_epoch,
- }
- with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
- f.write(json.dumps(log_stats) + "\n")
-
- if args.evaluate:
- break
- dist.barrier()
- torch.cuda.empty_cache()
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print('Training time {}'.format(total_time_str))
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--config', default='./configs/retrieval_flickr.yaml')
- parser.add_argument('--output_dir', default='output/Retrieval_flickr')
- parser.add_argument('--evaluate', action='store_true')
- parser.add_argument('--device', default='cuda')
- parser.add_argument('--seed', default=42, type=int)
- parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
- parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
- parser.add_argument('--distributed', default=True, type=bool)
- args = parser.parse_args()
- config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
- Path(args.output_dir).mkdir(parents=True, exist_ok=True)
-
- yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
-
- main(args, config)
|