| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 |
- import cv2
- import numpy as np
- ## aug functions
- def identity_func(img):
- return img
- def autocontrast_func(img, cutoff=0):
- '''
- same output as PIL.ImageOps.autocontrast
- '''
- n_bins = 256
- def tune_channel(ch):
- n = ch.size
- cut = cutoff * n // 100
- if cut == 0:
- high, low = ch.max(), ch.min()
- else:
- hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
- low = np.argwhere(np.cumsum(hist) > cut)
- low = 0 if low.shape[0] == 0 else low[0]
- high = np.argwhere(np.cumsum(hist[::-1]) > cut)
- high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
- if high <= low:
- table = np.arange(n_bins)
- else:
- scale = (n_bins - 1) / (high - low)
- offset = -low * scale
- table = np.arange(n_bins) * scale + offset
- table[table < 0] = 0
- table[table > n_bins - 1] = n_bins - 1
- table = table.clip(0, 255).astype(np.uint8)
- return table[ch]
- channels = [tune_channel(ch) for ch in cv2.split(img)]
- out = cv2.merge(channels)
- return out
- def equalize_func(img):
- '''
- same output as PIL.ImageOps.equalize
- PIL's implementation is different from cv2.equalize
- '''
- n_bins = 256
- def tune_channel(ch):
- hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
- non_zero_hist = hist[hist != 0].reshape(-1)
- step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
- if step == 0: return ch
- n = np.empty_like(hist)
- n[0] = step // 2
- n[1:] = hist[:-1]
- table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
- return table[ch]
- channels = [tune_channel(ch) for ch in cv2.split(img)]
- out = cv2.merge(channels)
- return out
- def rotate_func(img, degree, fill=(0, 0, 0)):
- '''
- like PIL, rotate by degree, not radians
- '''
- H, W = img.shape[0], img.shape[1]
- center = W / 2, H / 2
- M = cv2.getRotationMatrix2D(center, degree, 1)
- out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
- return out
- def solarize_func(img, thresh=128):
- '''
- same output as PIL.ImageOps.posterize
- '''
- table = np.array([el if el < thresh else 255 - el for el in range(256)])
- table = table.clip(0, 255).astype(np.uint8)
- out = table[img]
- return out
- def color_func(img, factor):
- '''
- same output as PIL.ImageEnhance.Color
- '''
- ## implementation according to PIL definition, quite slow
- # degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
- # out = blend(degenerate, img, factor)
- # M = (
- # np.eye(3) * factor
- # + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
- # )[np.newaxis, np.newaxis, :]
- M = (
- np.float32([
- [0.886, -0.114, -0.114],
- [-0.587, 0.413, -0.587],
- [-0.299, -0.299, 0.701]]) * factor
- + np.float32([[0.114], [0.587], [0.299]])
- )
- out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
- return out
- def contrast_func(img, factor):
- """
- same output as PIL.ImageEnhance.Contrast
- """
- mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
- table = np.array([(
- el - mean) * factor + mean
- for el in range(256)
- ]).clip(0, 255).astype(np.uint8)
- out = table[img]
- return out
- def brightness_func(img, factor):
- '''
- same output as PIL.ImageEnhance.Contrast
- '''
- table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
- out = table[img]
- return out
- def sharpness_func(img, factor):
- '''
- The differences the this result and PIL are all on the 4 boundaries, the center
- areas are same
- '''
- kernel = np.ones((3, 3), dtype=np.float32)
- kernel[1][1] = 5
- kernel /= 13
- degenerate = cv2.filter2D(img, -1, kernel)
- if factor == 0.0:
- out = degenerate
- elif factor == 1.0:
- out = img
- else:
- out = img.astype(np.float32)
- degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
- out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
- out = out.astype(np.uint8)
- return out
- def shear_x_func(img, factor, fill=(0, 0, 0)):
- H, W = img.shape[0], img.shape[1]
- M = np.float32([[1, factor, 0], [0, 1, 0]])
- out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
- return out
- def translate_x_func(img, offset, fill=(0, 0, 0)):
- '''
- same output as PIL.Image.transform
- '''
- H, W = img.shape[0], img.shape[1]
- M = np.float32([[1, 0, -offset], [0, 1, 0]])
- out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
- return out
- def translate_y_func(img, offset, fill=(0, 0, 0)):
- '''
- same output as PIL.Image.transform
- '''
- H, W = img.shape[0], img.shape[1]
- M = np.float32([[1, 0, 0], [0, 1, -offset]])
- out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
- return out
- def posterize_func(img, bits):
- '''
- same output as PIL.ImageOps.posterize
- '''
- out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
- return out
- def shear_y_func(img, factor, fill=(0, 0, 0)):
- H, W = img.shape[0], img.shape[1]
- M = np.float32([[1, 0, 0], [factor, 1, 0]])
- out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
- return out
- def cutout_func(img, pad_size, replace=(0, 0, 0)):
- replace = np.array(replace, dtype=np.uint8)
- H, W = img.shape[0], img.shape[1]
- rh, rw = np.random.random(2)
- pad_size = pad_size // 2
- ch, cw = int(rh * H), int(rw * W)
- x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
- y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
- out = img.copy()
- out[x1:x2, y1:y2, :] = replace
- return out
- ### level to args
- def enhance_level_to_args(MAX_LEVEL):
- def level_to_args(level):
- return ((level / MAX_LEVEL) * 1.8 + 0.1,)
- return level_to_args
- def shear_level_to_args(MAX_LEVEL, replace_value):
- def level_to_args(level):
- level = (level / MAX_LEVEL) * 0.3
- if np.random.random() > 0.5: level = -level
- return (level, replace_value)
- return level_to_args
- def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
- def level_to_args(level):
- level = (level / MAX_LEVEL) * float(translate_const)
- if np.random.random() > 0.5: level = -level
- return (level, replace_value)
- return level_to_args
- def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
- def level_to_args(level):
- level = int((level / MAX_LEVEL) * cutout_const)
- return (level, replace_value)
- return level_to_args
- def solarize_level_to_args(MAX_LEVEL):
- def level_to_args(level):
- level = int((level / MAX_LEVEL) * 256)
- return (level, )
- return level_to_args
- def none_level_to_args(level):
- return ()
- def posterize_level_to_args(MAX_LEVEL):
- def level_to_args(level):
- level = int((level / MAX_LEVEL) * 4)
- return (level, )
- return level_to_args
- def rotate_level_to_args(MAX_LEVEL, replace_value):
- def level_to_args(level):
- level = (level / MAX_LEVEL) * 30
- if np.random.random() < 0.5:
- level = -level
- return (level, replace_value)
- return level_to_args
- func_dict = {
- 'Identity': identity_func,
- 'AutoContrast': autocontrast_func,
- 'Equalize': equalize_func,
- 'Rotate': rotate_func,
- 'Solarize': solarize_func,
- 'Color': color_func,
- 'Contrast': contrast_func,
- 'Brightness': brightness_func,
- 'Sharpness': sharpness_func,
- 'ShearX': shear_x_func,
- 'TranslateX': translate_x_func,
- 'TranslateY': translate_y_func,
- 'Posterize': posterize_func,
- 'ShearY': shear_y_func,
- }
- translate_const = 10
- MAX_LEVEL = 10
- replace_value = (128, 128, 128)
- arg_dict = {
- 'Identity': none_level_to_args,
- 'AutoContrast': none_level_to_args,
- 'Equalize': none_level_to_args,
- 'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value),
- 'Solarize': solarize_level_to_args(MAX_LEVEL),
- 'Color': enhance_level_to_args(MAX_LEVEL),
- 'Contrast': enhance_level_to_args(MAX_LEVEL),
- 'Brightness': enhance_level_to_args(MAX_LEVEL),
- 'Sharpness': enhance_level_to_args(MAX_LEVEL),
- 'ShearX': shear_level_to_args(MAX_LEVEL, replace_value),
- 'TranslateX': translate_level_to_args(
- translate_const, MAX_LEVEL, replace_value
- ),
- 'TranslateY': translate_level_to_args(
- translate_const, MAX_LEVEL, replace_value
- ),
- 'Posterize': posterize_level_to_args(MAX_LEVEL),
- 'ShearY': shear_level_to_args(MAX_LEVEL, replace_value),
- }
- class RandomAugment(object):
- def __init__(self, N=2, M=10, isPIL=False, augs=[]):
- self.N = N
- self.M = M
- self.isPIL = isPIL
- if augs:
- self.augs = augs
- else:
- self.augs = list(arg_dict.keys())
- def get_random_ops(self):
- sampled_ops = np.random.choice(self.augs, self.N)
- return [(op, 0.5, self.M) for op in sampled_ops]
- def __call__(self, img):
- if self.isPIL:
- img = np.array(img)
- ops = self.get_random_ops()
- for name, prob, level in ops:
- if np.random.random() > prob:
- continue
- args = arg_dict[name](level)
- img = func_dict[name](img, *args)
- return img
- if __name__ == '__main__':
- a = RandomAugment()
- img = np.random.randn(32, 32, 3)
- a(img)
|