| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- import math
- def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
- """Decay the learning rate"""
- lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
-
- def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
- """Warmup the learning rate"""
- lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
- def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
- """Decay the learning rate"""
- lr = max(min_lr, init_lr * (decay_rate**epoch))
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
-
- import numpy as np
- import io
- import os
- import time
- from collections import defaultdict, deque
- import datetime
- import torch
- import torch.distributed as dist
- class SmoothedValue(object):
- """Track a series of values and provide access to smoothed values over a
- window or the global series average.
- """
- def __init__(self, window_size=20, fmt=None):
- if fmt is None:
- fmt = "{median:.4f} ({global_avg:.4f})"
- self.deque = deque(maxlen=window_size)
- self.total = 0.0
- self.count = 0
- self.fmt = fmt
- def update(self, value, n=1):
- self.deque.append(value)
- self.count += n
- self.total += value * n
- def synchronize_between_processes(self):
- """
- Warning: does not synchronize the deque!
- """
- if not is_dist_avail_and_initialized():
- return
- t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
- dist.barrier()
- dist.all_reduce(t)
- t = t.tolist()
- self.count = int(t[0])
- self.total = t[1]
- @property
- def median(self):
- d = torch.tensor(list(self.deque))
- return d.median().item()
- @property
- def avg(self):
- d = torch.tensor(list(self.deque), dtype=torch.float32)
- return d.mean().item()
- @property
- def global_avg(self):
- return self.total / self.count
- @property
- def max(self):
- return max(self.deque)
- @property
- def value(self):
- return self.deque[-1]
- def __str__(self):
- return self.fmt.format(
- median=self.median,
- avg=self.avg,
- global_avg=self.global_avg,
- max=self.max,
- value=self.value)
- class MetricLogger(object):
- def __init__(self, delimiter="\t"):
- self.meters = defaultdict(SmoothedValue)
- self.delimiter = delimiter
- def update(self, **kwargs):
- for k, v in kwargs.items():
- if isinstance(v, torch.Tensor):
- v = v.item()
- assert isinstance(v, (float, int))
- self.meters[k].update(v)
- def __getattr__(self, attr):
- if attr in self.meters:
- return self.meters[attr]
- if attr in self.__dict__:
- return self.__dict__[attr]
- raise AttributeError("'{}' object has no attribute '{}'".format(
- type(self).__name__, attr))
- def __str__(self):
- loss_str = []
- for name, meter in self.meters.items():
- loss_str.append(
- "{}: {}".format(name, str(meter))
- )
- return self.delimiter.join(loss_str)
- def global_avg(self):
- loss_str = []
- for name, meter in self.meters.items():
- loss_str.append(
- "{}: {:.4f}".format(name, meter.global_avg)
- )
- return self.delimiter.join(loss_str)
-
- def synchronize_between_processes(self):
- for meter in self.meters.values():
- meter.synchronize_between_processes()
- def add_meter(self, name, meter):
- self.meters[name] = meter
- def log_every(self, iterable, print_freq, header=None):
- i = 0
- if not header:
- header = ''
- start_time = time.time()
- end = time.time()
- iter_time = SmoothedValue(fmt='{avg:.4f}')
- data_time = SmoothedValue(fmt='{avg:.4f}')
- space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
- log_msg = [
- header,
- '[{0' + space_fmt + '}/{1}]',
- 'eta: {eta}',
- '{meters}',
- 'time: {time}',
- 'data: {data}'
- ]
- if torch.cuda.is_available():
- log_msg.append('max mem: {memory:.0f}')
- log_msg = self.delimiter.join(log_msg)
- MB = 1024.0 * 1024.0
- for obj in iterable:
- data_time.update(time.time() - end)
- yield obj
- iter_time.update(time.time() - end)
- if i % print_freq == 0 or i == len(iterable) - 1:
- eta_seconds = iter_time.global_avg * (len(iterable) - i)
- eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
- if torch.cuda.is_available():
- print(log_msg.format(
- i, len(iterable), eta=eta_string,
- meters=str(self),
- time=str(iter_time), data=str(data_time),
- memory=torch.cuda.max_memory_allocated() / MB))
- else:
- print(log_msg.format(
- i, len(iterable), eta=eta_string,
- meters=str(self),
- time=str(iter_time), data=str(data_time)))
- i += 1
- end = time.time()
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print('{} Total time: {} ({:.4f} s / it)'.format(
- header, total_time_str, total_time / len(iterable)))
-
- class AttrDict(dict):
- def __init__(self, *args, **kwargs):
- super(AttrDict, self).__init__(*args, **kwargs)
- self.__dict__ = self
- def compute_acc(logits, label, reduction='mean'):
- ret = (torch.argmax(logits, dim=1) == label).float()
- if reduction == 'none':
- return ret.detach()
- elif reduction == 'mean':
- return ret.mean().item()
- def compute_n_params(model, return_str=True):
- tot = 0
- for p in model.parameters():
- w = 1
- for x in p.shape:
- w *= x
- tot += w
- if return_str:
- if tot >= 1e6:
- return '{:.1f}M'.format(tot / 1e6)
- else:
- return '{:.1f}K'.format(tot / 1e3)
- else:
- return tot
- def setup_for_distributed(is_master):
- """
- This function disables printing when not in master process
- """
- import builtins as __builtin__
- builtin_print = __builtin__.print
- def print(*args, **kwargs):
- force = kwargs.pop('force', False)
- if is_master or force:
- builtin_print(*args, **kwargs)
- __builtin__.print = print
- def is_dist_avail_and_initialized():
- if not dist.is_available():
- return False
- if not dist.is_initialized():
- return False
- return True
- def get_world_size():
- if not is_dist_avail_and_initialized():
- return 1
- return dist.get_world_size()
- def get_rank():
- if not is_dist_avail_and_initialized():
- return 0
- return dist.get_rank()
- def is_main_process():
- return get_rank() == 0
- def save_on_master(*args, **kwargs):
- if is_main_process():
- torch.save(*args, **kwargs)
- def init_distributed_mode(args):
- if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
- args.rank = int(os.environ["RANK"])
- args.world_size = int(os.environ['WORLD_SIZE'])
- args.gpu = int(os.environ['LOCAL_RANK'])
- elif 'SLURM_PROCID' in os.environ:
- args.rank = int(os.environ['SLURM_PROCID'])
- args.gpu = args.rank % torch.cuda.device_count()
- else:
- print('Not using distributed mode')
- args.distributed = False
- return
- args.distributed = True
- torch.cuda.set_device(args.gpu)
- args.dist_backend = 'nccl'
- print('| distributed init (rank {}, word {}): {}'.format(
- args.rank, args.world_size, args.dist_url), flush=True)
- torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
- world_size=args.world_size, rank=args.rank)
- torch.distributed.barrier()
- setup_for_distributed(args.rank == 0)
-
-
|