| 123456789101112131415161718192021222324252627282930313233343536 |
- import torch
- from PIL import Image
- from torchvision import transforms
- from torchvision.transforms.functional import InterpolationMode
- from BLIP.models.blip import blip_decoder
- class BLIPDecoderService:
- _instance = None
- _model = None
- def __new__(cls):
- if cls._instance is None:
- cls._instance = super(BLIPDecoderService, cls).__new__(cls)
- cls.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- cls.image_size = 384
-
- # Load Model
- model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'
- cls._model = blip_decoder(pretrained=model_url, image_size=cls.image_size, vit='base')
- cls._model.eval()
- cls._model = cls._model.to(cls.device)
-
- # Preprocess
- cls.transform = transforms.Compose([
- transforms.Resize((cls.image_size, cls.image_size), interpolation=InterpolationMode.BICUBIC),
- transforms.ToTensor(),
- transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
- ])
- return cls._instance
- def generate_caption(self, pil_image):
- image = self.transform(pil_image).unsqueeze(0).to(self.device)
- with torch.no_grad():
- # Beam search as per your requirement
- caption = self._model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5)
- return caption[0]
|