| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882 |
- # ==================== services.py ====================
- import requests
- import json
- from typing import Dict, List, Optional, Tuple
- from django.conf import settings
- from concurrent.futures import ThreadPoolExecutor, as_completed
- from sentence_transformers import SentenceTransformer, util
- import numpy as np
- from .ocr_service import OCRService
- # Initialize embedding model for normalization
- model_embedder = SentenceTransformer("all-MiniLM-L6-v2")
- class ProductAttributeService:
- """Service class for extracting product attributes using Groq LLM."""
- @staticmethod
- def combine_product_text(
- title: Optional[str] = None,
- short_desc: Optional[str] = None,
- long_desc: Optional[str] = None,
- ocr_text: Optional[str] = None
- ) -> Tuple[str, Dict[str, str]]:
- """
- Combine product metadata into a single text block.
- Returns: (combined_text, source_map) where source_map tracks which text came from where
- """
- parts = []
- source_map = {}
-
- if title:
- title_str = str(title).strip()
- parts.append(f"Title: {title_str}")
- source_map['title'] = title_str
- if short_desc:
- short_str = str(short_desc).strip()
- parts.append(f"Description: {short_str}")
- source_map['short_desc'] = short_str
- if long_desc:
- long_str = str(long_desc).strip()
- parts.append(f"Details: {long_str}")
- source_map['long_desc'] = long_str
- if ocr_text:
- parts.append(f"OCR Text: {ocr_text}")
- source_map['ocr_text'] = ocr_text
-
- combined = "\n".join(parts).strip()
-
- if not combined:
- return "No product information available", {}
-
- return combined, source_map
- @staticmethod
- def find_value_source(value: str, source_map: Dict[str, str]) -> str:
- """
- Find which source(s) contain the given value.
- Returns the source name(s) where the value appears.
- """
- value_lower = value.lower()
- # Split value into tokens for better matching
- value_tokens = set(value_lower.replace("-", " ").split())
-
- sources_found = []
- source_scores = {}
-
- for source_name, source_text in source_map.items():
- source_lower = source_text.lower()
-
- # Check for exact phrase match first
- if value_lower in source_lower:
- source_scores[source_name] = 1.0
- continue
-
- # Check for token matches
- token_matches = sum(1 for token in value_tokens if token in source_lower)
- if token_matches > 0:
- source_scores[source_name] = token_matches / len(value_tokens)
-
- # Return source with highest score, or all sources if multiple have same score
- if source_scores:
- max_score = max(source_scores.values())
- sources_found = [s for s, score in source_scores.items() if score == max_score]
-
- # Prioritize: title > short_desc > long_desc > ocr_text
- priority = ['title', 'short_desc', 'long_desc', 'ocr_text']
- for p in priority:
- if p in sources_found:
- return p
-
- return sources_found[0] if sources_found else "Not found"
-
- return "Not found"
- @staticmethod
- def extract_attributes_from_ocr(ocr_results: Dict, model: str = None) -> Dict:
- """Extract structured attributes from OCR text using LLM."""
- if model is None:
- model = settings.SUPPORTED_MODELS[0]
-
- detected_text = ocr_results.get('detected_text', [])
- if not detected_text:
- return {}
-
- # Format OCR text for prompt
- ocr_text = "\n".join([f"Text: {item['text']}, Confidence: {item['confidence']:.2f}"
- for item in detected_text])
-
- prompt = f"""
- You are an AI model that extracts structured attributes from OCR text detected on product images.
- Given the OCR detections below, infer the possible product attributes and return them as a clean JSON object.
- OCR Text:
- {ocr_text}
- Extract relevant attributes like:
- - brand
- - model_number
- - size (waist_size, length, etc.)
- - collection
- - any other relevant product information
- Return a JSON object with only the attributes you can confidently identify.
- If an attribute is not present, do not include it in the response.
- """
-
- payload = {
- "model": model,
- "messages": [
- {
- "role": "system",
- "content": "You are a helpful AI that extracts structured data from OCR output. Return only valid JSON."
- },
- {"role": "user", "content": prompt}
- ],
- "temperature": 0.2,
- "max_tokens": 500
- }
-
- headers = {
- "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- "Content-Type": "application/json",
- }
-
- try:
- response = requests.post(
- settings.GROQ_API_URL,
- headers=headers,
- json=payload,
- timeout=30
- )
- response.raise_for_status()
- result_text = response.json()["choices"][0]["message"]["content"].strip()
-
- # Clean and parse JSON
- result_text = ProductAttributeService._clean_json_response(result_text)
- parsed = json.loads(result_text)
-
- return parsed
- except Exception as e:
- return {"error": f"Failed to extract attributes from OCR: {str(e)}"}
- @staticmethod
- def calculate_attribute_relationships(
- mandatory_attrs: Dict[str, List[str]],
- product_text: str
- ) -> Dict[str, float]:
- """
- Calculate semantic relationships between attribute values across different attributes.
- Returns a matrix of cross-attribute value similarities.
- """
- pt_emb = model_embedder.encode(product_text, convert_to_tensor=True)
- # Calculate similarities between all attribute values and product text
- attr_scores = {}
- for attr, values in mandatory_attrs.items():
- attr_scores[attr] = {}
- for val in values:
- contexts = [val, f"for {val}", f"use in {val}", f"suitable for {val}"]
- ctx_embs = [model_embedder.encode(c, convert_to_tensor=True) for c in contexts]
- sem_sim = max(float(util.cos_sim(pt_emb, ce).item()) for ce in ctx_embs)
- attr_scores[attr][val] = sem_sim
- # Calculate cross-attribute value relationships
- relationships = {}
- attr_list = list(mandatory_attrs.keys())
- for i, attr1 in enumerate(attr_list):
- for attr2 in attr_list[i+1:]:
- # Calculate pairwise similarities between values of different attributes
- for val1 in mandatory_attrs[attr1]:
- for val2 in mandatory_attrs[attr2]:
- emb1 = model_embedder.encode(val1, convert_to_tensor=True)
- emb2 = model_embedder.encode(val2, convert_to_tensor=True)
- sim = float(util.cos_sim(emb1, emb2).item())
- # Store bidirectional relationships
- key1 = f"{attr1}:{val1}->{attr2}:{val2}"
- key2 = f"{attr2}:{val2}->{attr1}:{val1}"
- relationships[key1] = sim
- relationships[key2] = sim
- return relationships
- @staticmethod
- def calculate_value_clusters(
- values: List[str],
- scores: List[Tuple[str, float]],
- cluster_threshold: float = 0.4
- ) -> List[List[str]]:
- """
- Group values into semantic clusters based on their similarity to each other.
- Returns clusters of related values.
- """
- if len(values) <= 1:
- return [[val] for val, _ in scores]
- # Get embeddings for all values
- embeddings = [model_embedder.encode(val, convert_to_tensor=True) for val in values]
- # Calculate pairwise similarities
- similarity_matrix = np.zeros((len(values), len(values)))
- for i in range(len(values)):
- for j in range(i+1, len(values)):
- sim = float(util.cos_sim(embeddings[i], embeddings[j]).item())
- similarity_matrix[i][j] = sim
- similarity_matrix[j][i] = sim
- # Simple clustering: group values with high similarity
- clusters = []
- visited = set()
- for i, (val, score) in enumerate(scores):
- if i in visited:
- continue
- cluster = [val]
- visited.add(i)
- # Find similar values
- for j in range(len(values)):
- if j not in visited and similarity_matrix[i][j] >= cluster_threshold:
- cluster.append(values[j])
- visited.add(j)
- clusters.append(cluster)
- return clusters
- @staticmethod
- def get_dynamic_threshold(
- attr: str,
- val: str,
- base_score: float,
- extracted_attrs: Dict[str, List[Dict[str, str]]],
- relationships: Dict[str, float],
- mandatory_attrs: Dict[str, List[str]],
- base_threshold: float = 0.65,
- boost_factor: float = 0.15
- ) -> float:
- """
- Calculate dynamic threshold based on relationships with already-extracted attributes.
- """
- threshold = base_threshold
- # Check relationships with already extracted attributes
- max_relationship = 0.0
- for other_attr, other_values_list in extracted_attrs.items():
- if other_attr == attr:
- continue
- for other_val_dict in other_values_list:
- other_val = other_val_dict['value']
- key = f"{attr}:{val}->{other_attr}:{other_val}"
- if key in relationships:
- max_relationship = max(max_relationship, relationships[key])
- # If strong relationship exists, lower threshold
- if max_relationship > 0.6:
- threshold = base_threshold - (boost_factor * max_relationship)
- return max(0.3, threshold)
- @staticmethod
- def get_adaptive_margin(
- scores: List[Tuple[str, float]],
- base_margin: float = 0.15,
- max_margin: float = 0.22
- ) -> float:
- """
- Calculate adaptive margin based on score distribution.
- """
- if len(scores) < 2:
- return base_margin
- score_values = [s for _, s in scores]
- best_score = score_values[0]
- # If best score is very low, use adaptive margin but be more conservative
- if best_score < 0.5:
- # Calculate score spread in top 3-4 scores only (more selective)
- top_scores = score_values[:min(4, len(score_values))]
- score_range = max(top_scores) - min(top_scores)
- # Very controlled margin increase
- if score_range < 0.30:
- # Much more conservative scaling
- score_factor = (0.5 - best_score) * 0.35
- adaptive = base_margin + score_factor + (0.30 - score_range) * 0.2
- return min(adaptive, max_margin)
- return base_margin
- @staticmethod
- def _lexical_evidence(product_text: str, label: str) -> float:
- """Calculate lexical overlap between product text and label."""
- pt = product_text.lower()
- tokens = [t for t in label.lower().replace("-", " ").split() if t]
- if not tokens:
- return 0.0
- hits = sum(1 for t in tokens if t in pt)
- return hits / len(tokens)
- @staticmethod
- def normalize_against_product_text(
- product_text: str,
- mandatory_attrs: Dict[str, List[str]],
- source_map: Dict[str, str],
- threshold_abs: float = 0.65,
- margin: float = 0.15,
- allow_multiple: bool = False,
- sem_weight: float = 0.8,
- lex_weight: float = 0.2,
- extracted_attrs: Optional[Dict[str, List[Dict[str, str]]]] = None,
- relationships: Optional[Dict[str, float]] = None,
- use_dynamic_thresholds: bool = True,
- use_adaptive_margin: bool = True,
- use_semantic_clustering: bool = True
- ) -> dict:
- """
- Score each allowed value against the product_text with dynamic thresholds.
- Returns dict with values in array format: [{"value": "...", "source": "..."}]
- """
- if extracted_attrs is None:
- extracted_attrs = {}
- if relationships is None:
- relationships = {}
- pt_emb = model_embedder.encode(product_text, convert_to_tensor=True)
- extracted = {}
- for attr, allowed_values in mandatory_attrs.items():
- scores: List[Tuple[str, float]] = []
- for val in allowed_values:
- contexts = [val, f"for {val}", f"use in {val}", f"suitable for {val}", f"{val} room"]
- ctx_embs = [model_embedder.encode(c, convert_to_tensor=True) for c in contexts]
- sem_sim = max(float(util.cos_sim(pt_emb, ce).item()) for ce in ctx_embs)
- lex_score = ProductAttributeService._lexical_evidence(product_text, val)
- final_score = sem_weight * sem_sim + lex_weight * lex_score
- scores.append((val, final_score))
- scores.sort(key=lambda x: x[1], reverse=True)
- best_val, best_score = scores[0]
- # DEBUG: Print scores
- print(f"\n{'='*80}")
- print(f"Attribute: {attr}")
- print(f"{'='*80}")
- print(f"Top 5 Scores:")
- for i, (val, sc) in enumerate(scores[:5]):
- print(f" {i+1}. {val}: {sc:.4f}")
- print(f"\nBest: {best_val} (score: {best_score:.4f})")
- print(f"Base Threshold: {threshold_abs}")
- print(f"Base Margin: {margin}")
- # Calculate adaptive margin if enabled
- effective_margin = margin
- if allow_multiple and use_adaptive_margin:
- effective_margin = ProductAttributeService.get_adaptive_margin(scores, margin)
- print(f"Adaptive Margin: {effective_margin}")
- if not allow_multiple:
- source = ProductAttributeService.find_value_source(best_val, source_map)
- extracted[attr] = [{"value": best_val, "source": source}]
- print(f"Single value mode - Selected: {best_val}")
- else:
- print(f"\nMultiple value mode enabled")
- candidates = [best_val]
- use_base_threshold = best_score >= threshold_abs
- print(f"Use base threshold: {use_base_threshold} (best_score >= {threshold_abs})")
- # Get semantic clusters if enabled
- clusters = []
- if use_semantic_clustering:
- clusters = ProductAttributeService.calculate_value_clusters(
- allowed_values, scores, cluster_threshold=0.4
- )
- best_cluster = next((c for c in clusters if best_val in c), [best_val])
- print(f"\nSemantic Clusters:")
- for idx, cluster in enumerate(clusters):
- marker = " <- BEST" if best_val in cluster else ""
- print(f" Cluster {idx+1}: {cluster}{marker}")
- print(f"\nEvaluating additional candidates:")
- for val, sc in scores[1:]:
- # Calculate dynamic threshold for this value
- if use_dynamic_thresholds and extracted_attrs:
- dynamic_thresh = ProductAttributeService.get_dynamic_threshold(
- attr, val, sc, extracted_attrs, relationships,
- mandatory_attrs, threshold_abs
- )
- else:
- dynamic_thresh = threshold_abs
- within_margin = (best_score - sc) <= effective_margin
- above_threshold = sc >= dynamic_thresh
- # Check if in same semantic cluster as best value
- in_cluster = False
- if use_semantic_clustering and clusters:
- in_cluster = any(best_val in c and val in c for c in clusters)
- # DEBUG: Print candidate evaluation
- print(f"\n Candidate: {val}")
- print(f" Score: {sc:.4f}")
- print(f" Margin diff: {best_score - sc:.4f} (within_margin: {within_margin})")
- print(f" Dynamic threshold: {dynamic_thresh:.4f} (above_threshold: {above_threshold})")
- print(f" In cluster with best: {in_cluster}")
- # MODIFIED LOGIC: More permissive for multi-value extraction
- # BALANCED LOGIC: Smart multi-value extraction
- include_candidate = False
- reason = ""
- # Calculate score ratio (how close to best score)
- score_ratio = sc / best_score if best_score > 0 else 0
- if use_base_threshold:
- # Best score is good (>= threshold), be selective
- if above_threshold and within_margin:
- include_candidate = True
- reason = "above threshold AND within margin"
- elif in_cluster and within_margin and score_ratio >= 0.75:
- # Only include cluster members if they're close in score
- include_candidate = True
- reason = "in cluster AND within margin with good score ratio"
- else:
- # Best score is low (< threshold), be more careful
- # Only include candidates that are very close to the best score
- if within_margin and score_ratio >= 0.80:
- # Must be at least 80% of best score
- include_candidate = True
- reason = "within margin with strong score ratio"
- elif in_cluster and within_margin and score_ratio >= 0.85:
- # Cluster members need even higher ratio when best score is low
- include_candidate = True
- reason = "in cluster with tight margin and high score ratio"
- # Additional filter: Never include "Not Specified" if we have better options
- if include_candidate and val.lower() in ["not specified", "not_specified", "unspecified"]:
- # Only include "Not Specified" if it's the best value AND no other candidates
- if len(candidates) > 1 or (sc < best_score * 0.95):
- include_candidate = False
- reason = "excluded: 'Not Specified' with better alternatives"
- if include_candidate:
- candidates.append(val)
- print(f" ✓ INCLUDED - Reason: {reason}")
- else:
- print(f" ✗ EXCLUDED")
- # Map each candidate to its source and create array format
- extracted[attr] = []
- print(f"\nFinal candidates for {attr}: {candidates}")
- for candidate in candidates:
- source = ProductAttributeService.find_value_source(candidate, source_map)
- extracted[attr].append({"value": candidate, "source": source})
- print(f" - {candidate} (source: {source})")
- print(f"{'='*80}\n")
- return extracted
- @staticmethod
- def extract_attributes(
- product_text: str,
- mandatory_attrs: Dict[str, List[str]],
- source_map: Dict[str, str] = None,
- model: str = None,
- extract_additional: bool = True,
- multiple: Optional[List[str]] = None,
- threshold_abs: float = 0.65,
- margin: float = 0.15,
- use_dynamic_thresholds: bool = True,
- use_adaptive_margin: bool = True,
- use_semantic_clustering: bool = True
- ) -> dict:
- """
- Use Groq LLM to extract attributes from any product type with enhanced multi-value selection.
- Now returns values in array format: [{"value": "...", "source": "..."}]
- """
-
- if model is None:
- model = settings.SUPPORTED_MODELS[0]
- if multiple is None:
- multiple = []
- if source_map is None:
- source_map = {}
- # DEBUG: Print what we received
- print("\n" + "="*80)
- print("EXTRACT ATTRIBUTES - INPUT PARAMETERS")
- print("="*80)
- print(f"Product text length: {len(product_text)}")
- print(f"Mandatory attrs: {list(mandatory_attrs.keys())}")
- print(f"Multiple mode for: {multiple}")
- print(f"Threshold: {threshold_abs}, Margin: {margin}")
- print(f"Dynamic thresholds: {use_dynamic_thresholds}")
- print(f"Adaptive margin: {use_adaptive_margin}")
- print(f"Semantic clustering: {use_semantic_clustering}")
- print("="*80 + "\n")
- # Check if product text is empty or minimal
- if not product_text or product_text == "No product information available":
- return ProductAttributeService._create_error_response(
- "No product information provided",
- mandatory_attrs,
- extract_additional
- )
- # Create structured prompt for mandatory attributes
- mandatory_attr_list = []
- for attr_name, allowed_values in mandatory_attrs.items():
- mandatory_attr_list.append(f"{attr_name}: {', '.join(allowed_values)}")
- mandatory_attr_text = "\n".join(mandatory_attr_list)
- additional_instruction = ""
- if extract_additional:
- additional_instruction = """
- 2. Extract ADDITIONAL attributes: Identify any other relevant attributes from the product text
- that are NOT in the mandatory list. Only include attributes where you can find actual values
- in the product text. Do NOT include attributes with "Not Specified" or empty values.
-
- Examples of attributes to look for (only if present): Brand, Material, Size, Color, Dimensions,
- Weight, Features, Style, Theme, Pattern, Finish, Care Instructions, etc."""
- output_format = {
- "mandatory": {attr: "value or list of values" for attr in mandatory_attrs.keys()},
- }
- if extract_additional:
- output_format["additional"] = {
- "example_attribute_1": "actual value found",
- "example_attribute_2": "actual value found"
- }
- output_format["additional"]["_note"] = "Only include attributes with actual values found in text"
- prompt = f"""
- You are an intelligent product attribute extractor that works with ANY product type.
- TASK:
- 1. Extract MANDATORY attributes: For each mandatory attribute, select the most appropriate value(s)
- from the provided list. Choose the value(s) that best match the product description.
- {additional_instruction}
- Product Text:
- {product_text}
- Mandatory Attribute Lists (MUST select from these allowed values):
- {mandatory_attr_text}
- CRITICAL INSTRUCTIONS:
- - Return ONLY valid JSON, nothing else
- - No explanations, no markdown, no text before or after the JSON
- - For mandatory attributes, choose the value(s) from the provided list that best match
- - If a mandatory attribute cannot be determined from the product text, use "Not Specified"
- - Prefer exact matches from the allowed values list over generic synonyms
- - If multiple values are plausible, you MAY return more than one
- {f"- For additional attributes: ONLY include attributes where you found actual values in the product text. DO NOT include attributes with 'Not Specified', 'None', 'N/A', or empty values. If you cannot find a value for an attribute, simply don't include that attribute." if extract_additional else ""}
- - Be precise and only extract information that is explicitly stated or clearly implied
- Required Output Format:
- {json.dumps(output_format, indent=2)}
- """
- payload = {
- "model": model,
- "messages": [
- {
- "role": "system",
- "content": f"You are a precise attribute extraction model. Return ONLY valid JSON with {'mandatory and additional' if extract_additional else 'mandatory'} sections. No explanations, no markdown, no other text."
- },
- {"role": "user", "content": prompt}
- ],
- "temperature": 0.0,
- "max_tokens": 1500
- }
- headers = {
- "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- "Content-Type": "application/json",
- }
- try:
- response = requests.post(
- settings.GROQ_API_URL,
- headers=headers,
- json=payload,
- timeout=30
- )
- response.raise_for_status()
- result_text = response.json()["choices"][0]["message"]["content"].strip()
- # Clean the response
- result_text = ProductAttributeService._clean_json_response(result_text)
- # Parse JSON
- parsed = json.loads(result_text)
- # Validate and restructure if needed
- parsed = ProductAttributeService._validate_response_structure(
- parsed, mandatory_attrs, extract_additional
- )
- # Clean up and add source tracking to additional attributes in array format
- if extract_additional and "additional" in parsed:
- cleaned_additional = {}
- for k, v in parsed["additional"].items():
- if v and v not in ["Not Specified", "None", "N/A", "", "not specified", "none", "n/a"]:
- if not (isinstance(v, str) and v.lower() in ["not specified", "none", "n/a", ""]):
- source = ProductAttributeService.find_value_source(str(v), source_map)
- cleaned_additional[k] = [{"value": str(v), "source": source}]
- parsed["additional"] = cleaned_additional
- # Calculate attribute relationships if using dynamic thresholds
- relationships = {}
- if use_dynamic_thresholds:
- relationships = ProductAttributeService.calculate_attribute_relationships(
- mandatory_attrs, product_text
- )
- # Process attributes in order, allowing earlier ones to influence later ones
- extracted_so_far = {}
- for attr in mandatory_attrs.keys():
- allow_multiple = attr in multiple
-
- # DEBUG: Print per-attribute processing
- print(f"\n>>> Processing attribute: {attr}")
- print(f" Allow multiple: {allow_multiple}")
- print(f" In multiple list: {attr in multiple}")
- print(f" Multiple list: {multiple}")
- result = ProductAttributeService.normalize_against_product_text(
- product_text=product_text,
- mandatory_attrs={attr: mandatory_attrs[attr]},
- source_map=source_map,
- threshold_abs=threshold_abs,
- margin=margin,
- allow_multiple=allow_multiple,
- extracted_attrs=extracted_so_far,
- relationships=relationships,
- use_dynamic_thresholds=use_dynamic_thresholds,
- use_adaptive_margin=use_adaptive_margin,
- use_semantic_clustering=use_semantic_clustering
- )
- parsed["mandatory"][attr] = result[attr]
- extracted_so_far[attr] = result[attr]
- return parsed
- except requests.exceptions.RequestException as e:
- return ProductAttributeService._create_error_response(
- str(e), mandatory_attrs, extract_additional
- )
- except json.JSONDecodeError as e:
- return ProductAttributeService._create_error_response(
- f"Invalid JSON: {str(e)}", mandatory_attrs, extract_additional, result_text
- )
- except Exception as e:
- return ProductAttributeService._create_error_response(
- str(e), mandatory_attrs, extract_additional
- )
- @staticmethod
- def extract_attributes_batch(
- products: List[Dict],
- mandatory_attrs: Dict[str, List[str]],
- model: str = None,
- extract_additional: bool = True,
- process_image: bool = True,
- max_workers: int = 5,
- multiple: Optional[List[str]] = None,
- threshold_abs: float = 0.65,
- margin: float = 0.15,
- use_dynamic_thresholds: bool = True,
- use_adaptive_margin: bool = True,
- use_semantic_clustering: bool = True
- ) -> Dict:
- """Extract attributes for multiple products in parallel with enhanced multi-value selection and source tracking."""
- results = []
- successful = 0
- failed = 0
-
- ocr_service = OCRService()
- if multiple is None:
- multiple = []
- def process_product(product_data):
- """Process a single product."""
- product_id = product_data.get('product_id', f"product_{len(results)}")
-
- try:
- # Process image if URL is provided
- ocr_results = None
- ocr_text = None
-
- if process_image and product_data.get('image_url'):
- ocr_results = ocr_service.process_image(product_data['image_url'])
-
- # Extract attributes from OCR
- if ocr_results and ocr_results.get('detected_text'):
- ocr_attrs = ProductAttributeService.extract_attributes_from_ocr(
- ocr_results, model
- )
- ocr_results['extracted_attributes'] = ocr_attrs
-
- # Format OCR text for combining with product text
- ocr_text = "\n".join([
- f"{item['text']} (confidence: {item['confidence']:.2f})"
- for item in ocr_results['detected_text']
- ])
-
- # Combine all product information with source tracking
- product_text, source_map = ProductAttributeService.combine_product_text(
- title=product_data.get('title'),
- short_desc=product_data.get('short_desc'),
- long_desc=product_data.get('long_desc'),
- ocr_text=ocr_text
- )
-
- # Extract attributes from combined text with enhanced features
- result = ProductAttributeService.extract_attributes(
- product_text=product_text,
- mandatory_attrs=mandatory_attrs,
- source_map=source_map,
- model=model,
- extract_additional=extract_additional,
- multiple=multiple,
- threshold_abs=threshold_abs,
- margin=margin,
- use_dynamic_thresholds=use_dynamic_thresholds,
- use_adaptive_margin=use_adaptive_margin,
- use_semantic_clustering=use_semantic_clustering
- )
-
- result['product_id'] = product_id
-
- # Add OCR results if available
- if ocr_results:
- result['ocr_results'] = ocr_results
-
- # Check if extraction was successful
- if 'error' not in result:
- return result, True
- else:
- return result, False
-
- except Exception as e:
- return {
- 'product_id': product_id,
- 'mandatory': {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- 'additional': {} if extract_additional else None,
- 'error': f"Processing error: {str(e)}"
- }, False
- # Process products in parallel
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
- future_to_product = {
- executor.submit(process_product, product): product
- for product in products
- }
-
- for future in as_completed(future_to_product):
- try:
- result, success = future.result()
- results.append(result)
- if success:
- successful += 1
- else:
- failed += 1
- except Exception as e:
- failed += 1
- results.append({
- 'product_id': 'unknown',
- 'mandatory': {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- 'additional': {} if extract_additional else None,
- 'error': f"Unexpected error: {str(e)}"
- })
- return {
- 'results': results,
- 'total_products': len(products),
- 'successful': successful,
- 'failed': failed
- }
- @staticmethod
- def _clean_json_response(text: str) -> str:
- """Clean LLM response to extract valid JSON."""
- start_idx = text.find('{')
- end_idx = text.rfind('}')
- if start_idx != -1 and end_idx != -1:
- text = text[start_idx:end_idx + 1]
- if "```json" in text:
- text = text.split("```json")[1].split("```")[0].strip()
- elif "```" in text:
- text = text.split("```")[1].split("```")[0].strip()
- if text.startswith("json"):
- text = text[4:].strip()
- return text
- @staticmethod
- def _validate_response_structure(
- parsed: dict,
- mandatory_attrs: Dict[str, List[str]],
- extract_additional: bool
- ) -> dict:
- """Validate and fix the response structure."""
- expected_sections = ["mandatory"]
- if extract_additional:
- expected_sections.append("additional")
- if not all(section in parsed for section in expected_sections):
- if isinstance(parsed, dict):
- mandatory_keys = set(mandatory_attrs.keys())
- mandatory = {k: v for k, v in parsed.items() if k in mandatory_keys}
- additional = {k: v for k, v in parsed.items() if k not in mandatory_keys}
- result = {"mandatory": mandatory}
- if extract_additional:
- result["additional"] = additional
- return result
- else:
- return ProductAttributeService._create_error_response(
- "Invalid response structure",
- mandatory_attrs,
- extract_additional,
- str(parsed)
- )
- return parsed
- @staticmethod
- def _create_error_response(
- error: str,
- mandatory_attrs: Dict[str, List[str]],
- extract_additional: bool,
- raw_output: Optional[str] = None
- ) -> dict:
- """Create a standardized error response in array format."""
- response = {
- "mandatory": {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- "error": error
- }
- if extract_additional:
- response["additional"] = {}
- if raw_output:
- response["raw_output"] = raw_output
- return response
|