| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805 |
- # # import requests
- # # import json
- # # from typing import Dict, List, Optional
- # # from django.conf import settings
- # # class ProductAttributeService:
- # # """Service class for extracting product attributes using Groq LLM."""
- # # @staticmethod
- # # def combine_product_text(
- # # title: Optional[str] = None,
- # # short_desc: Optional[str] = None,
- # # long_desc: Optional[str] = None
- # # ) -> str:
- # # """Combine product metadata into a single text block."""
- # # parts = []
- # # if title:
- # # parts.append(str(title).strip())
- # # if short_desc:
- # # parts.append(str(short_desc).strip())
- # # if long_desc:
- # # parts.append(str(long_desc).strip())
- # # combined = " ".join(parts).strip()
- # # if not combined:
- # # return "No product information available"
- # # return combined
- # # @staticmethod
- # # def extract_attributes(
- # # product_text: str,
- # # mandatory_attrs: Dict[str, List[str]],
- # # model: str = None,
- # # extract_additional: bool = True
- # # ) -> dict:
- # # """Use Groq LLM to extract attributes from any product type."""
-
- # # if model is None:
- # # model = settings.SUPPORTED_MODELS[0]
- # # # Check if product text is empty or minimal
- # # if not product_text or product_text == "No product information available":
- # # return ProductAttributeService._create_error_response(
- # # "No product information provided",
- # # mandatory_attrs,
- # # extract_additional
- # # )
- # # # Create structured prompt for mandatory attributes
- # # mandatory_attr_list = []
- # # for attr_name, allowed_values in mandatory_attrs.items():
- # # mandatory_attr_list.append(f"{attr_name}: {', '.join(allowed_values)}")
- # # mandatory_attr_text = "\n".join(mandatory_attr_list)
- # # additional_instruction = ""
- # # if extract_additional:
- # # additional_instruction = """
- # # 2. Extract ADDITIONAL attributes: Identify any other relevant attributes from the product text
- # # (such as Material, Size, Color, Brand, Dimensions, Weight, Features, Specifications, etc.)
- # # and their values. Extract attributes that are specific and relevant to this product type."""
- # # output_format = {
- # # "mandatory": {attr: "value" for attr in mandatory_attrs.keys()},
- # # "additional": {} if extract_additional else None
- # # }
- # # if not extract_additional:
- # # output_format.pop("additional")
- # # prompt = f"""
- # # You are an intelligent product attribute extractor that works with ANY product type.
- # # TASK:
- # # 1. Extract MANDATORY attributes: For each mandatory attribute, select the most appropriate value
- # # from the provided list. Choose the value that best matches the product description.
- # # {additional_instruction}
- # # Product Text:
- # # {product_text}
- # # Mandatory Attribute Lists (MUST select one value for each):
- # # {mandatory_attr_text}
- # # CRITICAL INSTRUCTIONS:
- # # - Return ONLY valid JSON, nothing else
- # # - No explanations, no markdown, no text before or after the JSON
- # # - For mandatory attributes, choose EXACTLY ONE value from the provided list that best matches
- # # - If a mandatory attribute cannot be determined from the product text, use "Not Specified"
- # # - Work with whatever information is available - the product text may be incomplete (only title, or only description, etc.)
- # # {f"- For additional attributes, extract any relevant information found in the product text" if extract_additional else ""}
- # # - Be precise and only extract information that is explicitly stated or clearly implied
- # # Required Output Format (ONLY THIS, NO OTHER TEXT):
- # # {json.dumps(output_format, indent=2)}
- # # """
- # # payload = {
- # # "model": model,
- # # "messages": [
- # # {
- # # "role": "system",
- # # "content": f"You are a precise attribute extraction model. Return ONLY valid JSON with {'mandatory and additional' if extract_additional else 'mandatory'} sections. No explanations, no markdown, no other text."
- # # },
- # # {"role": "user", "content": prompt}
- # # ],
- # # "temperature": 0.0,
- # # "max_tokens": 1500
- # # }
- # # headers = {
- # # "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- # # "Content-Type": "application/json",
- # # }
- # # try:
- # # response = requests.post(
- # # settings.GROQ_API_URL,
- # # headers=headers,
- # # json=payload,
- # # timeout=30
- # # )
- # # response.raise_for_status()
- # # result_text = response.json()["choices"][0]["message"]["content"].strip()
- # # # Clean the response
- # # result_text = ProductAttributeService._clean_json_response(result_text)
- # # # Parse JSON
- # # parsed = json.loads(result_text)
- # # # Validate and restructure if needed
- # # parsed = ProductAttributeService._validate_response_structure(
- # # parsed, mandatory_attrs, extract_additional
- # # )
- # # return parsed
- # # except requests.exceptions.RequestException as e:
- # # return ProductAttributeService._create_error_response(
- # # str(e), mandatory_attrs, extract_additional
- # # )
- # # except json.JSONDecodeError as e:
- # # return ProductAttributeService._create_error_response(
- # # f"Invalid JSON: {str(e)}", mandatory_attrs, extract_additional, result_text
- # # )
- # # except Exception as e:
- # # return ProductAttributeService._create_error_response(
- # # str(e), mandatory_attrs, extract_additional
- # # )
- # # @staticmethod
- # # def _clean_json_response(text: str) -> str:
- # # """Clean LLM response to extract valid JSON."""
- # # start_idx = text.find('{')
- # # end_idx = text.rfind('}')
- # # if start_idx != -1 and end_idx != -1:
- # # text = text[start_idx:end_idx + 1]
- # # if "```json" in text:
- # # text = text.split("```json")[1].split("```")[0].strip()
- # # elif "```" in text:
- # # text = text.split("```")[1].split("```")[0].strip()
- # # if text.startswith("json"):
- # # text = text[4:].strip()
- # # return text
- # # @staticmethod
- # # def _validate_response_structure(
- # # parsed: dict,
- # # mandatory_attrs: Dict[str, List[str]],
- # # extract_additional: bool
- # # ) -> dict:
- # # """Validate and fix the response structure."""
- # # expected_sections = ["mandatory"]
- # # if extract_additional:
- # # expected_sections.append("additional")
- # # if not all(section in parsed for section in expected_sections):
- # # if isinstance(parsed, dict):
- # # mandatory_keys = set(mandatory_attrs.keys())
- # # mandatory = {k: v for k, v in parsed.items() if k in mandatory_keys}
- # # additional = {k: v for k, v in parsed.items() if k not in mandatory_keys}
- # # result = {"mandatory": mandatory}
- # # if extract_additional:
- # # result["additional"] = additional
- # # return result
- # # else:
- # # return ProductAttributeService._create_error_response(
- # # "Invalid response structure",
- # # mandatory_attrs,
- # # extract_additional,
- # # str(parsed)
- # # )
- # # return parsed
- # # @staticmethod
- # # def _create_error_response(
- # # error: str,
- # # mandatory_attrs: Dict[str, List[str]],
- # # extract_additional: bool,
- # # raw_output: Optional[str] = None
- # # ) -> dict:
- # # """Create a standardized error response."""
- # # response = {
- # # "mandatory": {attr: "Not Specified" for attr in mandatory_attrs.keys()},
- # # "error": error
- # # }
- # # if extract_additional:
- # # response["additional"] = {}
- # # if raw_output:
- # # response["raw_output"] = raw_output
- # # return response
- # import requests
- # import json
- # from typing import Dict, List, Optional
- # from django.conf import settings
- # from concurrent.futures import ThreadPoolExecutor, as_completed
- # class ProductAttributeService:
- # """Service class for extracting product attributes using Groq LLM."""
- # @staticmethod
- # def combine_product_text(
- # title: Optional[str] = None,
- # short_desc: Optional[str] = None,
- # long_desc: Optional[str] = None
- # ) -> str:
- # """Combine product metadata into a single text block."""
- # parts = []
- # if title:
- # parts.append(str(title).strip())
- # if short_desc:
- # parts.append(str(short_desc).strip())
- # if long_desc:
- # parts.append(str(long_desc).strip())
- # combined = " ".join(parts).strip()
- # if not combined:
- # return "No product information available"
- # return combined
- # @staticmethod
- # def extract_attributes(
- # product_text: str,
- # mandatory_attrs: Dict[str, List[str]],
- # model: str = None,
- # extract_additional: bool = True
- # ) -> dict:
- # """Use Groq LLM to extract attributes from any product type."""
-
- # if model is None:
- # model = settings.SUPPORTED_MODELS[0]
- # # Check if product text is empty or minimal
- # if not product_text or product_text == "No product information available":
- # return ProductAttributeService._create_error_response(
- # "No product information provided",
- # mandatory_attrs,
- # extract_additional
- # )
- # # Create structured prompt for mandatory attributes
- # mandatory_attr_list = []
- # for attr_name, allowed_values in mandatory_attrs.items():
- # mandatory_attr_list.append(f"{attr_name}: {', '.join(allowed_values)}")
- # mandatory_attr_text = "\n".join(mandatory_attr_list)
- # additional_instruction = ""
- # if extract_additional:
- # additional_instruction = """
- # 2. Extract ADDITIONAL attributes: Identify any other relevant attributes from the product text
- # (such as Material, Size, Color, Brand, Dimensions, Weight, Features, Specifications, etc.)
- # and their values. Extract attributes that are specific and relevant to this product type."""
- # output_format = {
- # "mandatory": {attr: "value" for attr in mandatory_attrs.keys()},
- # "additional": {} if extract_additional else None
- # }
- # if not extract_additional:
- # output_format.pop("additional")
- # prompt = f"""
- # You are an intelligent product attribute extractor that works with ANY product type.
- # TASK:
- # 1. Extract MANDATORY attributes: For each mandatory attribute, select the most appropriate value
- # from the provided list. Choose the value that best matches the product description.
- # {additional_instruction}
- # Product Text:
- # {product_text}
- # Mandatory Attribute Lists (MUST select one value for each):
- # {mandatory_attr_text}
- # CRITICAL INSTRUCTIONS:
- # - Return ONLY valid JSON, nothing else
- # - No explanations, no markdown, no text before or after the JSON
- # - For mandatory attributes, choose EXACTLY ONE value from the provided list that best matches
- # - If a mandatory attribute cannot be determined from the product text, use "Not Specified"
- # - Work with whatever information is available - the product text may be incomplete (only title, or only description, etc.)
- # {f"- For additional attributes, extract any relevant information found in the product text" if extract_additional else ""}
- # - Be precise and only extract information that is explicitly stated or clearly implied
- # Required Output Format (ONLY THIS, NO OTHER TEXT):
- # {json.dumps(output_format, indent=2)}
- # """
- # payload = {
- # "model": model,
- # "messages": [
- # {
- # "role": "system",
- # "content": f"You are a precise attribute extraction model. Return ONLY valid JSON with {'mandatory and additional' if extract_additional else 'mandatory'} sections. No explanations, no markdown, no other text."
- # },
- # {"role": "user", "content": prompt}
- # ],
- # "temperature": 0.0,
- # "max_tokens": 1500
- # }
- # headers = {
- # "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- # "Content-Type": "application/json",
- # }
- # try:
- # response = requests.post(
- # settings.GROQ_API_URL,
- # headers=headers,
- # json=payload,
- # timeout=30
- # )
- # response.raise_for_status()
- # result_text = response.json()["choices"][0]["message"]["content"].strip()
- # # Clean the response
- # result_text = ProductAttributeService._clean_json_response(result_text)
- # # Parse JSON
- # parsed = json.loads(result_text)
- # # Validate and restructure if needed
- # parsed = ProductAttributeService._validate_response_structure(
- # parsed, mandatory_attrs, extract_additional
- # )
- # return parsed
- # except requests.exceptions.RequestException as e:
- # return ProductAttributeService._create_error_response(
- # str(e), mandatory_attrs, extract_additional
- # )
- # except json.JSONDecodeError as e:
- # return ProductAttributeService._create_error_response(
- # f"Invalid JSON: {str(e)}", mandatory_attrs, extract_additional, result_text
- # )
- # except Exception as e:
- # return ProductAttributeService._create_error_response(
- # str(e), mandatory_attrs, extract_additional
- # )
- # @staticmethod
- # def extract_attributes_batch(
- # products: List[Dict],
- # mandatory_attrs: Dict[str, List[str]],
- # model: str = None,
- # extract_additional: bool = True,
- # max_workers: int = 5
- # ) -> Dict:
- # """
- # Extract attributes for multiple products in parallel.
-
- # Args:
- # products: List of product dictionaries with keys: product_id, title, short_desc, long_desc
- # mandatory_attrs: Dictionary of mandatory attributes
- # model: Groq model to use
- # extract_additional: Whether to extract additional attributes
- # max_workers: Maximum number of parallel workers
-
- # Returns:
- # Dictionary with results, total_products, successful, and failed counts
- # """
- # results = []
- # successful = 0
- # failed = 0
- # def process_product(product_data):
- # """Process a single product."""
- # product_id = product_data.get('product_id', f"product_{len(results)}")
-
- # try:
- # product_text = ProductAttributeService.combine_product_text(
- # title=product_data.get('title'),
- # short_desc=product_data.get('short_desc'),
- # long_desc=product_data.get('long_desc')
- # )
-
- # result = ProductAttributeService.extract_attributes(
- # product_text=product_text,
- # mandatory_attrs=mandatory_attrs,
- # model=model,
- # extract_additional=extract_additional
- # )
-
- # result['product_id'] = product_id
-
- # # Check if extraction was successful
- # if 'error' not in result:
- # return result, True
- # else:
- # return result, False
-
- # except Exception as e:
- # return {
- # 'product_id': product_id,
- # 'mandatory': {attr: "Not Specified" for attr in mandatory_attrs.keys()},
- # 'additional': {} if extract_additional else None,
- # 'error': f"Processing error: {str(e)}"
- # }, False
- # # Process products in parallel
- # with ThreadPoolExecutor(max_workers=max_workers) as executor:
- # future_to_product = {
- # executor.submit(process_product, product): product
- # for product in products
- # }
-
- # for future in as_completed(future_to_product):
- # try:
- # result, success = future.result()
- # results.append(result)
- # if success:
- # successful += 1
- # else:
- # failed += 1
- # except Exception as e:
- # failed += 1
- # results.append({
- # 'product_id': 'unknown',
- # 'mandatory': {attr: "Not Specified" for attr in mandatory_attrs.keys()},
- # 'additional': {} if extract_additional else None,
- # 'error': f"Unexpected error: {str(e)}"
- # })
- # return {
- # 'results': results,
- # 'total_products': len(products),
- # 'successful': successful,
- # 'failed': failed
- # }
- # @staticmethod
- # def _clean_json_response(text: str) -> str:
- # """Clean LLM response to extract valid JSON."""
- # start_idx = text.find('{')
- # end_idx = text.rfind('}')
- # if start_idx != -1 and end_idx != -1:
- # text = text[start_idx:end_idx + 1]
- # if "```json" in text:
- # text = text.split("```json")[1].split("```")[0].strip()
- # elif "```" in text:
- # text = text.split("```")[1].split("```")[0].strip()
- # if text.startswith("json"):
- # text = text[4:].strip()
- # return text
- # @staticmethod
- # def _validate_response_structure(
- # parsed: dict,
- # mandatory_attrs: Dict[str, List[str]],
- # extract_additional: bool
- # ) -> dict:
- # """Validate and fix the response structure."""
- # expected_sections = ["mandatory"]
- # if extract_additional:
- # expected_sections.append("additional")
- # if not all(section in parsed for section in expected_sections):
- # if isinstance(parsed, dict):
- # mandatory_keys = set(mandatory_attrs.keys())
- # mandatory = {k: v for k, v in parsed.items() if k in mandatory_keys}
- # additional = {k: v for k, v in parsed.items() if k not in mandatory_keys}
- # result = {"mandatory": mandatory}
- # if extract_additional:
- # result["additional"] = additional
- # return result
- # else:
- # return ProductAttributeService._create_error_response(
- # "Invalid response structure",
- # mandatory_attrs,
- # extract_additional,
- # str(parsed)
- # )
- # return parsed
- # @staticmethod
- # def _create_error_response(
- # error: str,
- # mandatory_attrs: Dict[str, List[str]],
- # extract_additional: bool,
- # raw_output: Optional[str] = None
- # ) -> dict:
- # """Create a standardized error response."""
- # response = {
- # "mandatory": {attr: "Not Specified" for attr in mandatory_attrs.keys()},
- # "error": error
- # }
- # if extract_additional:
- # response["additional"] = {}
- # if raw_output:
- # response["raw_output"] = raw_output
- # return response
- # # ==================== services.py ====================
- # import requests
- # import json
- # from typing import Dict, List, Optional
- # from django.conf import settings
- # from concurrent.futures import ThreadPoolExecutor, as_completed
- # from .ocr_service import OCRService
- # class ProductAttributeService:
- # """Service class for extracting product attributes using Groq LLM."""
- # @staticmethod
- # def combine_product_text(
- # title: Optional[str] = None,
- # short_desc: Optional[str] = None,
- # long_desc: Optional[str] = None,
- # ocr_text: Optional[str] = None
- # ) -> str:
- # """Combine product metadata into a single text block."""
- # parts = []
- # if title:
- # parts.append(f"Title: {str(title).strip()}")
- # if short_desc:
- # parts.append(f"Description: {str(short_desc).strip()}")
- # if long_desc:
- # parts.append(f"Details: {str(long_desc).strip()}")
- # if ocr_text:
- # parts.append(f"OCR Text: {ocr_text}")
-
- # combined = "\n".join(parts).strip()
-
- # if not combined:
- # return "No product information available"
-
- # return combined
- # @staticmethod
- # def extract_attributes_from_ocr(ocr_results: Dict, model: str = None) -> Dict:
- # """Extract structured attributes from OCR text using LLM."""
- # if model is None:
- # model = settings.SUPPORTED_MODELS[0]
-
- # detected_text = ocr_results.get('detected_text', [])
- # if not detected_text:
- # return {}
-
- # # Format OCR text for prompt
- # ocr_text = "\n".join([f"Text: {item['text']}, Confidence: {item['confidence']:.2f}"
- # for item in detected_text])
-
- # prompt = f"""
- # You are an AI model that extracts structured attributes from OCR text detected on product images.
- # Given the OCR detections below, infer the possible product attributes and return them as a clean JSON object.
- # OCR Text:
- # {ocr_text}
- # Extract relevant attributes like:
- # - brand
- # - model_number
- # - size (waist_size, length, etc.)
- # - collection
- # - any other relevant product information
- # Return a JSON object with only the attributes you can confidently identify.
- # If an attribute is not present, do not include it in the response.
- # """
-
- # payload = {
- # "model": model,
- # "messages": [
- # {
- # "role": "system",
- # "content": "You are a helpful AI that extracts structured data from OCR output. Return only valid JSON."
- # },
- # {"role": "user", "content": prompt}
- # ],
- # "temperature": 0.2,
- # "max_tokens": 500
- # }
-
- # headers = {
- # "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- # "Content-Type": "application/json",
- # }
-
- # try:
- # response = requests.post(
- # settings.GROQ_API_URL,
- # headers=headers,
- # json=payload,
- # timeout=30
- # )
- # response.raise_for_status()
- # result_text = response.json()["choices"][0]["message"]["content"].strip()
-
- # # Clean and parse JSON
- # result_text = ProductAttributeService._clean_json_response(result_text)
- # parsed = json.loads(result_text)
-
- # return parsed
- # except Exception as e:
- # return {"error": f"Failed to extract attributes from OCR: {str(e)}"}
- # @staticmethod
- # def extract_attributes(
- # product_text: str,
- # mandatory_attrs: Dict[str, List[str]],
- # model: str = None,
- # extract_additional: bool = True
- # ) -> dict:
- # """Use Groq LLM to extract attributes from any product type."""
-
- # if model is None:
- # model = settings.SUPPORTED_MODELS[0]
- # # Check if product text is empty or minimal
- # if not product_text or product_text == "No product information available":
- # return ProductAttributeService._create_error_response(
- # "No product information provided",
- # mandatory_attrs,
- # extract_additional
- # )
- # # Create structured prompt for mandatory attributes
- # mandatory_attr_list = []
- # for attr_name, allowed_values in mandatory_attrs.items():
- # mandatory_attr_list.append(f"{attr_name}: {', '.join(allowed_values)}")
- # mandatory_attr_text = "\n".join(mandatory_attr_list)
- # additional_instruction = ""
- # if extract_additional:
- # additional_instruction = """
- # 2. Extract ADDITIONAL attributes: Identify any other relevant attributes from the product text
- # (such as Material, Size, Color, Brand, Dimensions, Weight, Features, Specifications, etc.)
- # and their values. Extract attributes that are specific and relevant to this product type."""
- # output_format = {
- # "mandatory": {attr: "value" for attr in mandatory_attrs.keys()},
- # "additional": {} if extract_additional else None
- # }
- # if not extract_additional:
- # output_format.pop("additional")
- # prompt = f"""
- # You are an intelligent product attribute extractor that works with ANY product type.
- # TASK:
- # 1. Extract MANDATORY attributes: For each mandatory attribute, select the most appropriate value
- # from the provided list. Choose the value that best matches the product description.
- # {additional_instruction}
- # Product Text:
- # {product_text}
- # Mandatory Attribute Lists (MUST select one value for each):
- # {mandatory_attr_text}
- # CRITICAL INSTRUCTIONS:
- # - Return ONLY valid JSON, nothing else
- # - No explanations, no markdown, no text before or after the JSON
- # - For mandatory attributes, choose EXACTLY ONE value from the provided list that best matches
- # - If a mandatory attribute cannot be determined from the product text, use "Not Specified"
- # - Work with whatever information is available - the product text may be incomplete
- # {f"- For additional attributes, extract any relevant information found in the product text" if extract_additional else ""}
- # - Be precise and only extract information that is explicitly stated or clearly implied
- # Required Output Format (ONLY THIS, NO OTHER TEXT):
- # {json.dumps(output_format, indent=2)}
- # """
- # payload = {
- # "model": model,
- # "messages": [
- # {
- # "role": "system",
- # "content": f"You are a precise attribute extraction model. Return ONLY valid JSON with {'mandatory and additional' if extract_additional else 'mandatory'} sections. No explanations, no markdown, no other text."
- # },
- # {"role": "user", "content": prompt}
- # ],
- # "temperature": 0.0,
- # "max_tokens": 1500
- # }
- # headers = {
- # "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- # "Content-Type": "application/json",
- # }
- # try:
- # response = requests.post(
- # settings.GROQ_API_URL,
- # headers=headers,
- # json=payload,
- # timeout=30
- # )
- # response.raise_for_status()
- # result_text = response.json()["choices"][0]["message"]["content"].strip()
- # # Clean the response
- # result_text = ProductAttributeService._clean_json_response(result_text)
- # # Parse JSON
- # parsed = json.loads(result_text)
- # # Validate and restructure if needed
- # parsed = ProductAttributeService._validate_response_structure(
- # parsed, mandatory_attrs, extract_additional
- # )
- # return parsed
- # except requests.exceptions.RequestException as e:
- # return ProductAttributeService._create_error_response(
- # str(e), mandatory_attrs, extract_additional
- # )
- # except json.JSONDecodeError as e:
- # return ProductAttributeService._create_error_response(
- # f"Invalid JSON: {str(e)}", mandatory_attrs, extract_additional, result_text
- # )
- # except Exception as e:
- # return ProductAttributeService._create_error_response(
- # str(e), mandatory_attrs, extract_additional
- # )
- # @staticmethod
- # def extract_attributes_batch(
- # products: List[Dict],
- # mandatory_attrs: Dict[str, List[str]],
- # model: str = None,
- # extract_additional: bool = True,
- # process_image: bool = True,
- # max_workers: int = 5
- # ) -> Dict:
- # """Extract attributes for multiple products in parallel."""
- # results = []
- # successful = 0
- # failed = 0
-
- # ocr_service = OCRService()
- # def process_product(product_data):
- # """Process a single product."""
- # product_id = product_data.get('product_id', f"product_{len(results)}")
-
- # try:
- # # Process image if URL is provided
- # ocr_results = None
- # ocr_text = None
-
- # if process_image and product_data.get('image_url'):
- # ocr_results = ocr_service.process_image(product_data['image_url'])
-
- # # Extract attributes from OCR
- # if ocr_results and ocr_results.get('detected_text'):
- # ocr_attrs = ProductAttributeService.extract_attributes_from_ocr(
- # ocr_results, model
- # )
- # ocr_results['extracted_attributes'] = ocr_attrs
-
- # # Format OCR text for combining with product text
- # ocr_text = "\n".join([
- # f"{item['text']} (confidence: {item['confidence']:.2f})"
- # for item in ocr_results['detected_text']
- # ])
-
- # # Combine all product information
- # product_text = ProductAttributeService.combine_product_text(
- # title=product_data.get('title'),
- # short_desc=product_data.get('short_desc'),
- # long_desc=product_data.get('long_desc'),
- # ocr_text=ocr_text
- # )
-
- # # Extract attributes from combined text
- # result = ProductAttributeService.extract_attributes(
- # product_text=product_text,
- # mandatory_attrs=mandatory_attrs,
- # model=model,
- # extract_additional=extract_additional
- # )
-
- # result['product_id'] = product_id
-
- # # Add OCR results if available
- # if ocr_results:
- # result['ocr_results'] = ocr_results
-
- # # Check if extraction was successful
- # if 'error' not in result:
- # return result, True
- # else:
- # return result, False
-
- # except Exception as e:
- # return {
- # 'product_id': product_id,
- # 'mandatory': {attr: "Not Specified" for attr in mandatory_attrs.keys()},
- # 'additional': {} if extract_additional else None,
- # 'error': f"Processing error: {str(e)}"
- # }, False
- # # Process products in parallel
- # with ThreadPoolExecutor(max_workers=max_workers) as executor:
- # future_to_product = {
- # executor.submit(process_product, product): product
- # for product in products
- # }
-
- # for future in as_completed(future_to_product):
- # try:
- # result, success = future.result()
- # results.append(result)
- # if success:
- # successful += 1
- # else:
- # failed += 1
- # except Exception as e:
- # failed += 1
- # results.append({
- # 'product_id': 'unknown',
- # 'mandatory': {attr: "Not Specified" for attr in mandatory_attrs.keys()},
- # 'additional': {} if extract_additional else None,
- # 'error': f"Unexpected error: {str(e)}"
- # })
- # return {
- # 'results': results,
- # 'total_products': len(products),
- # 'successful': successful,
- # 'failed': failed
- # }
- # @staticmethod
- # def _clean_json_response(text: str) -> str:
- # """Clean LLM response to extract valid JSON."""
- # start_idx = text.find('{')
- # end_idx = text.rfind('}')
- # if start_idx != -1 and end_idx != -1:
- # text = text[start_idx:end_idx + 1]
- # if "```json" in text:
- # text = text.split("```json")[1].split("```")[0].strip()
- # elif "```" in text:
- # text = text.split("```")[1].split("```")[0].strip()
- # if text.startswith("json"):
- # text = text[4:].strip()
- # return text
- # @staticmethod
- # def _validate_response_structure(
- # parsed: dict,
- # mandatory_attrs: Dict[str, List[str]],
- # extract_additional: bool
- # ) -> dict:
- # """Validate and fix the response structure."""
- # expected_sections = ["mandatory"]
- # if extract_additional:
- # expected_sections.append("additional")
- # if not all(section in parsed for section in expected_sections):
- # if isinstance(parsed, dict):
- # mandatory_keys = set(mandatory_attrs.keys())
- # mandatory = {k: v for k, v in parsed.items() if k in mandatory_keys}
- # additional = {k: v for k, v in parsed.items() if k not in mandatory_keys}
- # result = {"mandatory": mandatory}
- # if extract_additional:
- # result["additional"] = additional
- # return result
- # else:
- # return ProductAttributeService._create_error_response(
- # "Invalid response structure",
- # mandatory_attrs,
- # extract_additional,
- # str(parsed)
- # )
- # return parsed
- # @staticmethod
- # def _create_error_response(
- # error: str,
- # mandatory_attrs: Dict[str, List[str]],
- # extract_additional: bool,
- # raw_output: Optional[str] = None
- # ) -> dict:
- # """Create a standardized error response."""
- # response = {
- # "mandatory": {attr: "Not Specified" for attr in mandatory_attrs.keys()},
- # "error": error
- # }
- # if extract_additional:
- # response["additional"] = {}
- # if raw_output:
- # response["raw_output"] = raw_output
- # return response
- # # ==================== services.py ====================
- # import requests
- # import json
- # from typing import Dict, List, Optional, Tuple
- # from django.conf import settings
- # from concurrent.futures import ThreadPoolExecutor, as_completed
- # from sentence_transformers import SentenceTransformer, util
- # import numpy as np
- # from .ocr_service import OCRService
- # # Initialize embedding model for normalization
- # model_embedder = SentenceTransformer("all-MiniLM-L6-v2")
- # class ProductAttributeService:
- # """Service class for extracting product attributes using Groq LLM."""
- # @staticmethod
- # def combine_product_text(
- # title: Optional[str] = None,
- # short_desc: Optional[str] = None,
- # long_desc: Optional[str] = None,
- # ocr_text: Optional[str] = None
- # ) -> Tuple[str, Dict[str, str]]:
- # """
- # Combine product metadata into a single text block.
- # Returns: (combined_text, source_map) where source_map tracks which text came from where
- # """
- # parts = []
- # source_map = {}
-
- # if title:
- # title_str = str(title).strip()
- # parts.append(f"Title: {title_str}")
- # source_map['title'] = title_str
- # if short_desc:
- # short_str = str(short_desc).strip()
- # parts.append(f"Description: {short_str}")
- # source_map['short_desc'] = short_str
- # if long_desc:
- # long_str = str(long_desc).strip()
- # parts.append(f"Details: {long_str}")
- # source_map['long_desc'] = long_str
- # if ocr_text:
- # parts.append(f"OCR Text: {ocr_text}")
- # source_map['ocr_text'] = ocr_text
-
- # combined = "\n".join(parts).strip()
-
- # if not combined:
- # return "No product information available", {}
-
- # return combined, source_map
- # @staticmethod
- # def find_value_source(value: str, source_map: Dict[str, str]) -> str:
- # """
- # Find which source(s) contain the given value.
- # Returns the source name(s) where the value appears.
- # """
- # value_lower = value.lower()
- # # Split value into tokens for better matching
- # value_tokens = set(value_lower.replace("-", " ").split())
-
- # sources_found = []
- # source_scores = {}
-
- # for source_name, source_text in source_map.items():
- # source_lower = source_text.lower()
-
- # # Check for exact phrase match first
- # if value_lower in source_lower:
- # source_scores[source_name] = 1.0
- # continue
-
- # # Check for token matches
- # token_matches = sum(1 for token in value_tokens if token in source_lower)
- # if token_matches > 0:
- # source_scores[source_name] = token_matches / len(value_tokens)
-
- # # Return source with highest score, or all sources if multiple have same score
- # if source_scores:
- # max_score = max(source_scores.values())
- # sources_found = [s for s, score in source_scores.items() if score == max_score]
-
- # # Prioritize: title > short_desc > long_desc > ocr_text
- # priority = ['title', 'short_desc', 'long_desc', 'ocr_text']
- # for p in priority:
- # if p in sources_found:
- # return p
-
- # return sources_found[0] if sources_found else "Not found"
-
- # return "Not found"
- # @staticmethod
- # def extract_attributes_from_ocr(ocr_results: Dict, model: str = None) -> Dict:
- # """Extract structured attributes from OCR text using LLM."""
- # if model is None:
- # model = settings.SUPPORTED_MODELS[0]
-
- # detected_text = ocr_results.get('detected_text', [])
- # if not detected_text:
- # return {}
-
- # # Format OCR text for prompt
- # ocr_text = "\n".join([f"Text: {item['text']}, Confidence: {item['confidence']:.2f}"
- # for item in detected_text])
-
- # prompt = f"""
- # You are an AI model that extracts structured attributes from OCR text detected on product images.
- # Given the OCR detections below, infer the possible product attributes and return them as a clean JSON object.
- # OCR Text:
- # {ocr_text}
- # Extract relevant attributes like:
- # - brand
- # - model_number
- # - size (waist_size, length, etc.)
- # - collection
- # - any other relevant product information
- # Return a JSON object with only the attributes you can confidently identify.
- # If an attribute is not present, do not include it in the response.
- # """
-
- # payload = {
- # "model": model,
- # "messages": [
- # {
- # "role": "system",
- # "content": "You are a helpful AI that extracts structured data from OCR output. Return only valid JSON."
- # },
- # {"role": "user", "content": prompt}
- # ],
- # "temperature": 0.2,
- # "max_tokens": 500
- # }
-
- # headers = {
- # "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- # "Content-Type": "application/json",
- # }
-
- # try:
- # response = requests.post(
- # settings.GROQ_API_URL,
- # headers=headers,
- # json=payload,
- # timeout=30
- # )
- # response.raise_for_status()
- # result_text = response.json()["choices"][0]["message"]["content"].strip()
-
- # # Clean and parse JSON
- # result_text = ProductAttributeService._clean_json_response(result_text)
- # parsed = json.loads(result_text)
-
- # return parsed
- # except Exception as e:
- # return {"error": f"Failed to extract attributes from OCR: {str(e)}"}
- # @staticmethod
- # def calculate_attribute_relationships(
- # mandatory_attrs: Dict[str, List[str]],
- # product_text: str
- # ) -> Dict[str, float]:
- # """
- # Calculate semantic relationships between attribute values across different attributes.
- # Returns a matrix of cross-attribute value similarities.
- # """
- # pt_emb = model_embedder.encode(product_text, convert_to_tensor=True)
- # # Calculate similarities between all attribute values and product text
- # attr_scores = {}
- # for attr, values in mandatory_attrs.items():
- # attr_scores[attr] = {}
- # for val in values:
- # contexts = [val, f"for {val}", f"use in {val}", f"suitable for {val}"]
- # ctx_embs = [model_embedder.encode(c, convert_to_tensor=True) for c in contexts]
- # sem_sim = max(float(util.cos_sim(pt_emb, ce).item()) for ce in ctx_embs)
- # attr_scores[attr][val] = sem_sim
- # # Calculate cross-attribute value relationships
- # relationships = {}
- # attr_list = list(mandatory_attrs.keys())
- # for i, attr1 in enumerate(attr_list):
- # for attr2 in attr_list[i+1:]:
- # # Calculate pairwise similarities between values of different attributes
- # for val1 in mandatory_attrs[attr1]:
- # for val2 in mandatory_attrs[attr2]:
- # emb1 = model_embedder.encode(val1, convert_to_tensor=True)
- # emb2 = model_embedder.encode(val2, convert_to_tensor=True)
- # sim = float(util.cos_sim(emb1, emb2).item())
- # # Store bidirectional relationships
- # key1 = f"{attr1}:{val1}->{attr2}:{val2}"
- # key2 = f"{attr2}:{val2}->{attr1}:{val1}"
- # relationships[key1] = sim
- # relationships[key2] = sim
- # return relationships
- # @staticmethod
- # def calculate_value_clusters(
- # values: List[str],
- # scores: List[Tuple[str, float]],
- # cluster_threshold: float = 0.4
- # ) -> List[List[str]]:
- # """
- # Group values into semantic clusters based on their similarity to each other.
- # Returns clusters of related values.
- # """
- # if len(values) <= 1:
- # return [[val] for val, _ in scores]
- # # Get embeddings for all values
- # embeddings = [model_embedder.encode(val, convert_to_tensor=True) for val in values]
- # # Calculate pairwise similarities
- # similarity_matrix = np.zeros((len(values), len(values)))
- # for i in range(len(values)):
- # for j in range(i+1, len(values)):
- # sim = float(util.cos_sim(embeddings[i], embeddings[j]).item())
- # similarity_matrix[i][j] = sim
- # similarity_matrix[j][i] = sim
- # # Simple clustering: group values with high similarity
- # clusters = []
- # visited = set()
- # for i, (val, score) in enumerate(scores):
- # if i in visited:
- # continue
- # cluster = [val]
- # visited.add(i)
- # # Find similar values
- # for j in range(len(values)):
- # if j not in visited and similarity_matrix[i][j] >= cluster_threshold:
- # cluster.append(values[j])
- # visited.add(j)
- # clusters.append(cluster)
- # return clusters
- # @staticmethod
- # def get_dynamic_threshold(
- # attr: str,
- # val: str,
- # base_score: float,
- # extracted_attrs: Dict[str, List[Dict[str, str]]],
- # relationships: Dict[str, float],
- # mandatory_attrs: Dict[str, List[str]],
- # base_threshold: float = 0.65,
- # boost_factor: float = 0.15
- # ) -> float:
- # """
- # Calculate dynamic threshold based on relationships with already-extracted attributes.
- # """
- # threshold = base_threshold
- # # Check relationships with already extracted attributes
- # max_relationship = 0.0
- # for other_attr, other_values_list in extracted_attrs.items():
- # if other_attr == attr:
- # continue
- # for other_val_dict in other_values_list:
- # other_val = other_val_dict['value']
- # key = f"{attr}:{val}->{other_attr}:{other_val}"
- # if key in relationships:
- # max_relationship = max(max_relationship, relationships[key])
- # # If strong relationship exists, lower threshold
- # if max_relationship > 0.6:
- # threshold = base_threshold - (boost_factor * max_relationship)
- # return max(0.3, threshold)
- # @staticmethod
- # def get_adaptive_margin(
- # scores: List[Tuple[str, float]],
- # base_margin: float = 0.15,
- # max_margin: float = 0.22
- # ) -> float:
- # """
- # Calculate adaptive margin based on score distribution.
- # """
- # if len(scores) < 2:
- # return base_margin
- # score_values = [s for _, s in scores]
- # best_score = score_values[0]
- # # If best score is very low, use adaptive margin but be more conservative
- # if best_score < 0.5:
- # # Calculate score spread in top 3-4 scores only (more selective)
- # top_scores = score_values[:min(4, len(score_values))]
- # score_range = max(top_scores) - min(top_scores)
- # # Very controlled margin increase
- # if score_range < 0.30:
- # # Much more conservative scaling
- # score_factor = (0.5 - best_score) * 0.35
- # adaptive = base_margin + score_factor + (0.30 - score_range) * 0.2
- # return min(adaptive, max_margin)
- # return base_margin
- # @staticmethod
- # def _lexical_evidence(product_text: str, label: str) -> float:
- # """Calculate lexical overlap between product text and label."""
- # pt = product_text.lower()
- # tokens = [t for t in label.lower().replace("-", " ").split() if t]
- # if not tokens:
- # return 0.0
- # hits = sum(1 for t in tokens if t in pt)
- # return hits / len(tokens)
- # @staticmethod
- # def normalize_against_product_text(
- # product_text: str,
- # mandatory_attrs: Dict[str, List[str]],
- # source_map: Dict[str, str],
- # threshold_abs: float = 0.65,
- # margin: float = 0.15,
- # allow_multiple: bool = False,
- # sem_weight: float = 0.8,
- # lex_weight: float = 0.2,
- # extracted_attrs: Optional[Dict[str, List[Dict[str, str]]]] = None,
- # relationships: Optional[Dict[str, float]] = None,
- # use_dynamic_thresholds: bool = True,
- # use_adaptive_margin: bool = True,
- # use_semantic_clustering: bool = True
- # ) -> dict:
- # """
- # Score each allowed value against the product_text with dynamic thresholds.
- # Returns dict with values in array format: [{"value": "...", "source": "..."}]
- # """
- # if extracted_attrs is None:
- # extracted_attrs = {}
- # if relationships is None:
- # relationships = {}
- # pt_emb = model_embedder.encode(product_text, convert_to_tensor=True)
- # extracted = {}
- # for attr, allowed_values in mandatory_attrs.items():
- # scores: List[Tuple[str, float]] = []
- # for val in allowed_values:
- # contexts = [val, f"for {val}", f"use in {val}", f"suitable for {val}", f"{val} room"]
- # ctx_embs = [model_embedder.encode(c, convert_to_tensor=True) for c in contexts]
- # sem_sim = max(float(util.cos_sim(pt_emb, ce).item()) for ce in ctx_embs)
- # lex_score = ProductAttributeService._lexical_evidence(product_text, val)
- # final_score = sem_weight * sem_sim + lex_weight * lex_score
- # scores.append((val, final_score))
- # scores.sort(key=lambda x: x[1], reverse=True)
- # best_val, best_score = scores[0]
- # # Calculate adaptive margin if enabled
- # effective_margin = margin
- # if allow_multiple and use_adaptive_margin:
- # effective_margin = ProductAttributeService.get_adaptive_margin(scores, margin)
- # if not allow_multiple:
- # source = ProductAttributeService.find_value_source(best_val, source_map)
- # extracted[attr] = [{"value": best_val, "source": source}]
- # else:
- # candidates = [best_val]
- # use_base_threshold = best_score >= threshold_abs
- # # Get semantic clusters if enabled
- # clusters = []
- # if use_semantic_clustering:
- # clusters = ProductAttributeService.calculate_value_clusters(
- # allowed_values, scores, cluster_threshold=0.4
- # )
- # best_cluster = next((c for c in clusters if best_val in c), [best_val])
- # for val, sc in scores[1:]:
- # # Calculate dynamic threshold for this value
- # if use_dynamic_thresholds and extracted_attrs:
- # dynamic_thresh = ProductAttributeService.get_dynamic_threshold(
- # attr, val, sc, extracted_attrs, relationships,
- # mandatory_attrs, threshold_abs
- # )
- # else:
- # dynamic_thresh = threshold_abs
- # within_margin = (best_score - sc) <= effective_margin
- # above_threshold = sc >= dynamic_thresh
- # # Check if in same semantic cluster as best value
- # in_cluster = False
- # if use_semantic_clustering and clusters:
- # in_cluster = any(best_val in c and val in c for c in clusters)
- # if use_base_threshold:
- # # Best score is good, require threshold OR (cluster + margin)
- # if above_threshold and within_margin:
- # candidates.append(val)
- # elif in_cluster and within_margin:
- # candidates.append(val)
- # else:
- # # Best score is low, use margin OR cluster logic
- # if within_margin:
- # candidates.append(val)
- # elif in_cluster and (best_score - sc) <= effective_margin * 2.0:
- # # Extended margin for cluster members
- # candidates.append(val)
- # # Map each candidate to its source and create array format
- # extracted[attr] = []
- # for candidate in candidates:
- # source = ProductAttributeService.find_value_source(candidate, source_map)
- # extracted[attr].append({"value": candidate, "source": source})
- # return extracted
- # @staticmethod
- # def extract_attributes(
- # product_text: str,
- # mandatory_attrs: Dict[str, List[str]],
- # source_map: Dict[str, str] = None,
- # model: str = None,
- # extract_additional: bool = True,
- # multiple: Optional[List[str]] = None,
- # threshold_abs: float = 0.65,
- # margin: float = 0.15,
- # use_dynamic_thresholds: bool = True,
- # use_adaptive_margin: bool = True,
- # use_semantic_clustering: bool = True
- # ) -> dict:
- # """
- # Use Groq LLM to extract attributes from any product type with enhanced multi-value selection.
- # Now returns values in array format: [{"value": "...", "source": "..."}]
- # """
-
- # if model is None:
- # model = settings.SUPPORTED_MODELS[0]
- # if multiple is None:
- # multiple = []
- # if source_map is None:
- # source_map = {}
- # # Check if product text is empty or minimal
- # if not product_text or product_text == "No product information available":
- # return ProductAttributeService._create_error_response(
- # "No product information provided",
- # mandatory_attrs,
- # extract_additional
- # )
- # # Create structured prompt for mandatory attributes
- # mandatory_attr_list = []
- # for attr_name, allowed_values in mandatory_attrs.items():
- # mandatory_attr_list.append(f"{attr_name}: {', '.join(allowed_values)}")
- # mandatory_attr_text = "\n".join(mandatory_attr_list)
- # additional_instruction = ""
- # if extract_additional:
- # additional_instruction = """
- # 2. Extract ADDITIONAL attributes: Identify any other relevant attributes from the product text
- # that are NOT in the mandatory list. Only include attributes where you can find actual values
- # in the product text. Do NOT include attributes with "Not Specified" or empty values.
-
- # Examples of attributes to look for (only if present): Brand, Material, Size, Color, Dimensions,
- # Weight, Features, Style, Theme, Pattern, Finish, Care Instructions, etc."""
- # output_format = {
- # "mandatory": {attr: "value or list of values" for attr in mandatory_attrs.keys()},
- # }
- # if extract_additional:
- # output_format["additional"] = {
- # "example_attribute_1": "actual value found",
- # "example_attribute_2": "actual value found"
- # }
- # output_format["additional"]["_note"] = "Only include attributes with actual values found in text"
- # prompt = f"""
- # You are an intelligent product attribute extractor that works with ANY product type.
- # TASK:
- # 1. Extract MANDATORY attributes: For each mandatory attribute, select the most appropriate value(s)
- # from the provided list. Choose the value(s) that best match the product description.
- # {additional_instruction}
- # Product Text:
- # {product_text}
- # Mandatory Attribute Lists (MUST select from these allowed values):
- # {mandatory_attr_text}
- # CRITICAL INSTRUCTIONS:
- # - Return ONLY valid JSON, nothing else
- # - No explanations, no markdown, no text before or after the JSON
- # - For mandatory attributes, choose the value(s) from the provided list that best match
- # - If a mandatory attribute cannot be determined from the product text, use "Not Specified"
- # - Prefer exact matches from the allowed values list over generic synonyms
- # - If multiple values are plausible, you MAY return more than one
- # {f"- For additional attributes: ONLY include attributes where you found actual values in the product text. DO NOT include attributes with 'Not Specified', 'None', 'N/A', or empty values. If you cannot find a value for an attribute, simply don't include that attribute." if extract_additional else ""}
- # - Be precise and only extract information that is explicitly stated or clearly implied
- # Required Output Format:
- # {json.dumps(output_format, indent=2)}
- # """
- # payload = {
- # "model": model,
- # "messages": [
- # {
- # "role": "system",
- # "content": f"You are a precise attribute extraction model. Return ONLY valid JSON with {'mandatory and additional' if extract_additional else 'mandatory'} sections. No explanations, no markdown, no other text."
- # },
- # {"role": "user", "content": prompt}
- # ],
- # "temperature": 0.0,
- # "max_tokens": 1500
- # }
- # headers = {
- # "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- # "Content-Type": "application/json",
- # }
- # try:
- # response = requests.post(
- # settings.GROQ_API_URL,
- # headers=headers,
- # json=payload,
- # timeout=30
- # )
- # response.raise_for_status()
- # result_text = response.json()["choices"][0]["message"]["content"].strip()
- # # Clean the response
- # result_text = ProductAttributeService._clean_json_response(result_text)
- # # Parse JSON
- # parsed = json.loads(result_text)
- # # Validate and restructure with source tracking
- # parsed = ProductAttributeService._validate_response_structure(
- # parsed, mandatory_attrs, extract_additional, source_map
- # )
- # # Clean up and add source tracking to additional attributes in array format
- # if extract_additional and "additional" in parsed:
- # cleaned_additional = {}
- # for k, v in parsed["additional"].items():
- # if v and v not in ["Not Specified", "None", "N/A", "", "not specified", "none", "n/a"]:
- # if not (isinstance(v, str) and v.lower() in ["not specified", "none", "n/a", ""]):
- # # Convert to array format if not already
- # if isinstance(v, list):
- # cleaned_additional[k] = []
- # for item in v:
- # if isinstance(item, dict) and "value" in item:
- # if "source" not in item:
- # item["source"] = ProductAttributeService.find_value_source(
- # item["value"], source_map
- # )
- # cleaned_additional[k].append(item)
- # else:
- # source = ProductAttributeService.find_value_source(str(item), source_map)
- # cleaned_additional[k].append({"value": str(item), "source": source})
- # else:
- # source = ProductAttributeService.find_value_source(str(v), source_map)
- # cleaned_additional[k] = [{"value": str(v), "source": source}]
- # parsed["additional"] = cleaned_additional
- # # Calculate attribute relationships if using dynamic thresholds
- # relationships = {}
- # if use_dynamic_thresholds:
- # relationships = ProductAttributeService.calculate_attribute_relationships(
- # mandatory_attrs, product_text
- # )
- # # Process attributes in order, allowing earlier ones to influence later ones
- # extracted_so_far = {}
- # for attr in mandatory_attrs.keys():
- # allow_multiple = attr in multiple
- # result = ProductAttributeService.normalize_against_product_text(
- # product_text=product_text,
- # mandatory_attrs={attr: mandatory_attrs[attr]},
- # source_map=source_map,
- # threshold_abs=threshold_abs,
- # margin=margin,
- # allow_multiple=allow_multiple,
- # extracted_attrs=extracted_so_far,
- # relationships=relationships,
- # use_dynamic_thresholds=use_dynamic_thresholds,
- # use_adaptive_margin=use_adaptive_margin,
- # use_semantic_clustering=use_semantic_clustering
- # )
- # # Result is already in array format from normalize_against_product_text
- # parsed["mandatory"][attr] = result[attr]
- # extracted_so_far[attr] = result[attr]
- # return parsed
- # except requests.exceptions.RequestException as e:
- # return ProductAttributeService._create_error_response(
- # str(e), mandatory_attrs, extract_additional
- # )
- # except json.JSONDecodeError as e:
- # return ProductAttributeService._create_error_response(
- # f"Invalid JSON: {str(e)}", mandatory_attrs, extract_additional, result_text
- # )
- # except Exception as e:
- # return ProductAttributeService._create_error_response(
- # str(e), mandatory_attrs, extract_additional
- # )
- # @staticmethod
- # def extract_attributes_batch(
- # products: List[Dict],
- # mandatory_attrs: Dict[str, List[str]],
- # model: str = None,
- # extract_additional: bool = True,
- # process_image: bool = True,
- # max_workers: int = 5,
- # multiple: Optional[List[str]] = None,
- # threshold_abs: float = 0.65,
- # margin: float = 0.15,
- # use_dynamic_thresholds: bool = True,
- # use_adaptive_margin: bool = True,
- # use_semantic_clustering: bool = True
- # ) -> Dict:
- # """Extract attributes for multiple products in parallel with enhanced multi-value selection and source tracking."""
- # results = []
- # successful = 0
- # failed = 0
-
- # ocr_service = OCRService()
- # if multiple is None:
- # multiple = []
- # def process_product(product_data):
- # """Process a single product."""
- # product_id = product_data.get('product_id', f"product_{len(results)}")
-
- # try:
- # # Process image if URL is provided
- # ocr_results = None
- # ocr_text = None
-
- # if process_image and product_data.get('image_url'):
- # ocr_results = ocr_service.process_image(product_data['image_url'])
-
- # # Extract attributes from OCR
- # if ocr_results and ocr_results.get('detected_text'):
- # ocr_attrs = ProductAttributeService.extract_attributes_from_ocr(
- # ocr_results, model
- # )
- # ocr_results['extracted_attributes'] = ocr_attrs
-
- # # Format OCR text for combining with product text
- # ocr_text = "\n".join([
- # f"{item['text']} (confidence: {item['confidence']:.2f})"
- # for item in ocr_results['detected_text']
- # ])
-
- # # Combine all product information with source tracking
- # product_text, source_map = ProductAttributeService.combine_product_text(
- # title=product_data.get('title'),
- # short_desc=product_data.get('short_desc'),
- # long_desc=product_data.get('long_desc'),
- # ocr_text=ocr_text
- # )
-
- # # Extract attributes from combined text with enhanced features
- # result = ProductAttributeService.extract_attributes(
- # product_text=product_text,
- # mandatory_attrs=mandatory_attrs,
- # source_map=source_map,
- # model=model,
- # extract_additional=extract_additional,
- # multiple=multiple,
- # threshold_abs=threshold_abs,
- # margin=margin,
- # use_dynamic_thresholds=use_dynamic_thresholds,
- # use_adaptive_margin=use_adaptive_margin,
- # use_semantic_clustering=use_semantic_clustering
- # )
-
- # result['product_id'] = product_id
-
- # # Add OCR results if available
- # if ocr_results:
- # result['ocr_results'] = ocr_results
-
- # # Check if extraction was successful
- # if 'error' not in result:
- # return result, True
- # else:
- # return result, False
-
- # except Exception as e:
- # return {
- # 'product_id': product_id,
- # 'mandatory': {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- # 'additional': {} if extract_additional else None,
- # 'error': f"Processing error: {str(e)}"
- # }, False
- # # Process products in parallel
- # with ThreadPoolExecutor(max_workers=max_workers) as executor:
- # future_to_product = {
- # executor.submit(process_product, product): product
- # for product in products
- # }
-
- # for future in as_completed(future_to_product):
- # try:
- # result, success = future.result()
- # results.append(result)
- # if success:
- # successful += 1
- # else:
- # failed += 1
- # except Exception as e:
- # failed += 1
- # results.append({
- # 'product_id': 'unknown',
- # 'mandatory': {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- # 'additional': {} if extract_additional else None,
- # 'error': f"Unexpected error: {str(e)}"
- # })
- # return {
- # 'results': results,
- # 'total_products': len(products),
- # 'successful': successful,
- # 'failed': failed
- # }
- # @staticmethod
- # def _clean_json_response(text: str) -> str:
- # """Clean LLM response to extract valid JSON."""
- # start_idx = text.find('{')
- # end_idx = text.rfind('}')
- # if start_idx != -1 and end_idx != -1:
- # text = text[start_idx:end_idx + 1]
- # if "```json" in text:
- # text = text.split("```json")[1].split("```")[0].strip()
- # elif "```" in text:
- # text = text.split("```")[1].split("```")[0].strip()
- # if text.startswith("json"):
- # text = text[4:].strip()
- # return text
- # @staticmethod
- # def _validate_response_structure(
- # parsed: dict,
- # mandatory_attrs: Dict[str, List[str]],
- # extract_additional: bool,
- # source_map: Dict[str, str] = None
- # ) -> dict:
- # """Validate and fix the response structure, ensuring array format with source tracking."""
- # if source_map is None:
- # source_map = {}
-
- # expected_sections = ["mandatory"]
- # if extract_additional:
- # expected_sections.append("additional")
- # if not all(section in parsed for section in expected_sections):
- # if isinstance(parsed, dict):
- # mandatory_keys = set(mandatory_attrs.keys())
- # mandatory = {k: v for k, v in parsed.items() if k in mandatory_keys}
- # additional = {k: v for k, v in parsed.items() if k not in mandatory_keys}
- # result = {"mandatory": mandatory}
- # if extract_additional:
- # result["additional"] = additional
- # parsed = result
- # else:
- # return ProductAttributeService._create_error_response(
- # "Invalid response structure",
- # mandatory_attrs,
- # extract_additional,
- # str(parsed)
- # )
- # # Convert mandatory attributes to array format with source tracking
- # if "mandatory" in parsed:
- # converted_mandatory = {}
- # for attr, value in parsed["mandatory"].items():
- # if isinstance(value, list):
- # # Already in array format, ensure each item has source
- # converted_mandatory[attr] = []
- # for item in value:
- # if isinstance(item, dict) and "value" in item:
- # # Already has proper structure
- # if "source" not in item:
- # item["source"] = ProductAttributeService.find_value_source(
- # item["value"], source_map
- # )
- # converted_mandatory[attr].append(item)
- # else:
- # # Convert string to proper format
- # source = ProductAttributeService.find_value_source(str(item), source_map)
- # converted_mandatory[attr].append({"value": str(item), "source": source})
- # else:
- # # Single value - convert to array format
- # source = ProductAttributeService.find_value_source(str(value), source_map)
- # converted_mandatory[attr] = [{"value": str(value), "source": source}]
-
- # parsed["mandatory"] = converted_mandatory
- # return parsed
- # @staticmethod
- # def _create_error_response(
- # error: str,
- # mandatory_attrs: Dict[str, List[str]],
- # extract_additional: bool,
- # raw_output: Optional[str] = None
- # ) -> dict:
- # """Create a standardized error response in array format."""
- # response = {
- # "mandatory": {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- # "error": error
- # }
- # if extract_additional:
- # response["additional"] = {}
- # if raw_output:
- # response["raw_output"] = raw_output
- # return response
- # # ==================== services.py ====================
- # import requests
- # import json
- # from typing import Dict, List, Optional, Tuple
- # from django.conf import settings
- # from concurrent.futures import ThreadPoolExecutor, as_completed
- # from sentence_transformers import SentenceTransformer, util
- # import numpy as np
- # from .ocr_service import OCRService
- # # Initialize embedding model for normalization
- # model_embedder = SentenceTransformer("all-MiniLM-L6-v2")
- # class ProductAttributeService:
- # """Service class for extracting product attributes using Groq LLM."""
- # @staticmethod
- # def combine_product_text(
- # title: Optional[str] = None,
- # short_desc: Optional[str] = None,
- # long_desc: Optional[str] = None,
- # ocr_text: Optional[str] = None
- # ) -> Tuple[str, Dict[str, str]]:
- # """
- # Combine product metadata into a single text block.
- # Returns: (combined_text, source_map) where source_map tracks which text came from where
- # """
- # parts = []
- # source_map = {}
-
- # if title:
- # title_str = str(title).strip()
- # parts.append(f"Title: {title_str}")
- # source_map['title'] = title_str
- # if short_desc:
- # short_str = str(short_desc).strip()
- # parts.append(f"Description: {short_str}")
- # source_map['short_desc'] = short_str
- # if long_desc:
- # long_str = str(long_desc).strip()
- # parts.append(f"Details: {long_str}")
- # source_map['long_desc'] = long_str
- # if ocr_text:
- # parts.append(f"OCR Text: {ocr_text}")
- # source_map['ocr_text'] = ocr_text
-
- # combined = "\n".join(parts).strip()
-
- # if not combined:
- # return "No product information available", {}
-
- # return combined, source_map
- # @staticmethod
- # def find_value_source(value: str, source_map: Dict[str, str]) -> str:
- # """
- # Find which source(s) contain the given value.
- # Returns the source name(s) where the value appears.
- # """
- # value_lower = value.lower()
- # # Split value into tokens for better matching
- # value_tokens = set(value_lower.replace("-", " ").split())
-
- # sources_found = []
- # source_scores = {}
-
- # for source_name, source_text in source_map.items():
- # source_lower = source_text.lower()
-
- # # Check for exact phrase match first
- # if value_lower in source_lower:
- # source_scores[source_name] = 1.0
- # continue
-
- # # Check for token matches
- # token_matches = sum(1 for token in value_tokens if token in source_lower)
- # if token_matches > 0:
- # source_scores[source_name] = token_matches / len(value_tokens)
-
- # # Return source with highest score, or all sources if multiple have same score
- # if source_scores:
- # max_score = max(source_scores.values())
- # sources_found = [s for s, score in source_scores.items() if score == max_score]
-
- # # Prioritize: title > short_desc > long_desc > ocr_text
- # priority = ['title', 'short_desc', 'long_desc', 'ocr_text']
- # for p in priority:
- # if p in sources_found:
- # return p
-
- # return sources_found[0] if sources_found else "Not found"
-
- # return "Not found"
- # @staticmethod
- # def format_visual_attributes(visual_attributes: Dict) -> Dict:
- # """
- # Convert visual attributes to array format with source tracking.
- # Source is always 'image' for visual attributes.
- # """
- # formatted = {}
-
- # for key, value in visual_attributes.items():
- # if isinstance(value, list):
- # # Already a list (like color_palette)
- # formatted[key] = [{"value": str(item), "source": "image"} for item in value]
- # elif isinstance(value, dict):
- # # Nested dictionary - format recursively
- # nested_formatted = {}
- # for nested_key, nested_value in value.items():
- # if isinstance(nested_value, list):
- # nested_formatted[nested_key] = [{"value": str(item), "source": "image"} for item in nested_value]
- # else:
- # nested_formatted[nested_key] = [{"value": str(nested_value), "source": "image"}]
- # formatted[key] = nested_formatted
- # else:
- # # Single value
- # formatted[key] = [{"value": str(value), "source": "image"}]
-
- # return formatted
- # @staticmethod
- # def extract_attributes_from_ocr(ocr_results: Dict, model: str = None) -> Dict:
- # """Extract structured attributes from OCR text using LLM."""
- # if model is None:
- # model = settings.SUPPORTED_MODELS[0]
-
- # detected_text = ocr_results.get('detected_text', [])
- # if not detected_text:
- # return {}
-
- # # Format OCR text for prompt
- # ocr_text = "\n".join([f"Text: {item['text']}, Confidence: {item['confidence']:.2f}"
- # for item in detected_text])
-
- # prompt = f"""
- # You are an AI model that extracts structured attributes from OCR text detected on product images.
- # Given the OCR detections below, infer the possible product attributes and return them as a clean JSON object.
- # OCR Text:
- # {ocr_text}
- # Extract relevant attributes like:
- # - brand
- # - model_number
- # - size (waist_size, length, etc.)
- # - collection
- # - any other relevant product information
- # Return a JSON object with only the attributes you can confidently identify.
- # If an attribute is not present, do not include it in the response.
- # """
-
- # payload = {
- # "model": model,
- # "messages": [
- # {
- # "role": "system",
- # "content": "You are a helpful AI that extracts structured data from OCR output. Return only valid JSON."
- # },
- # {"role": "user", "content": prompt}
- # ],
- # "temperature": 0.2,
- # "max_tokens": 500
- # }
-
- # headers = {
- # "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- # "Content-Type": "application/json",
- # }
-
- # try:
- # response = requests.post(
- # settings.GROQ_API_URL,
- # headers=headers,
- # json=payload,
- # timeout=30
- # )
- # response.raise_for_status()
- # result_text = response.json()["choices"][0]["message"]["content"].strip()
-
- # # Clean and parse JSON
- # result_text = ProductAttributeService._clean_json_response(result_text)
- # parsed = json.loads(result_text)
-
- # # Convert to array format with source tracking
- # formatted_attributes = {}
- # for key, value in parsed.items():
- # if key == "error":
- # continue
-
- # # Handle nested dictionaries (like size)
- # if isinstance(value, dict):
- # nested_formatted = {}
- # for nested_key, nested_value in value.items():
- # nested_formatted[nested_key] = [{"value": str(nested_value), "source": "image"}]
- # formatted_attributes[key] = nested_formatted
- # elif isinstance(value, list):
- # # Already a list, convert each item
- # formatted_attributes[key] = [{"value": str(item), "source": "image"} for item in value]
- # else:
- # # Single value
- # formatted_attributes[key] = [{"value": str(value), "source": "image"}]
-
- # return formatted_attributes
- # except Exception as e:
- # return {"error": f"Failed to extract attributes from OCR: {str(e)}"}
- # @staticmethod
- # def calculate_attribute_relationships(
- # mandatory_attrs: Dict[str, List[str]],
- # product_text: str
- # ) -> Dict[str, float]:
- # """
- # Calculate semantic relationships between attribute values across different attributes.
- # Returns a matrix of cross-attribute value similarities.
- # """
- # pt_emb = model_embedder.encode(product_text, convert_to_tensor=True)
- # # Calculate similarities between all attribute values and product text
- # attr_scores = {}
- # for attr, values in mandatory_attrs.items():
- # attr_scores[attr] = {}
- # for val in values:
- # contexts = [val, f"for {val}", f"use in {val}", f"suitable for {val}"]
- # ctx_embs = [model_embedder.encode(c, convert_to_tensor=True) for c in contexts]
- # sem_sim = max(float(util.cos_sim(pt_emb, ce).item()) for ce in ctx_embs)
- # attr_scores[attr][val] = sem_sim
- # # Calculate cross-attribute value relationships
- # relationships = {}
- # attr_list = list(mandatory_attrs.keys())
- # for i, attr1 in enumerate(attr_list):
- # for attr2 in attr_list[i+1:]:
- # # Calculate pairwise similarities between values of different attributes
- # for val1 in mandatory_attrs[attr1]:
- # for val2 in mandatory_attrs[attr2]:
- # emb1 = model_embedder.encode(val1, convert_to_tensor=True)
- # emb2 = model_embedder.encode(val2, convert_to_tensor=True)
- # sim = float(util.cos_sim(emb1, emb2).item())
- # # Store bidirectional relationships
- # key1 = f"{attr1}:{val1}->{attr2}:{val2}"
- # key2 = f"{attr2}:{val2}->{attr1}:{val1}"
- # relationships[key1] = sim
- # relationships[key2] = sim
- # return relationships
- # @staticmethod
- # def calculate_value_clusters(
- # values: List[str],
- # scores: List[Tuple[str, float]],
- # cluster_threshold: float = 0.4
- # ) -> List[List[str]]:
- # """
- # Group values into semantic clusters based on their similarity to each other.
- # Returns clusters of related values.
- # """
- # if len(values) <= 1:
- # return [[val] for val, _ in scores]
- # # Get embeddings for all values
- # embeddings = [model_embedder.encode(val, convert_to_tensor=True) for val in values]
- # # Calculate pairwise similarities
- # similarity_matrix = np.zeros((len(values), len(values)))
- # for i in range(len(values)):
- # for j in range(i+1, len(values)):
- # sim = float(util.cos_sim(embeddings[i], embeddings[j]).item())
- # similarity_matrix[i][j] = sim
- # similarity_matrix[j][i] = sim
- # # Simple clustering: group values with high similarity
- # clusters = []
- # visited = set()
- # for i, (val, score) in enumerate(scores):
- # if i in visited:
- # continue
- # cluster = [val]
- # visited.add(i)
- # # Find similar values
- # for j in range(len(values)):
- # if j not in visited and similarity_matrix[i][j] >= cluster_threshold:
- # cluster.append(values[j])
- # visited.add(j)
- # clusters.append(cluster)
- # return clusters
- # @staticmethod
- # def get_dynamic_threshold(
- # attr: str,
- # val: str,
- # base_score: float,
- # extracted_attrs: Dict[str, List[Dict[str, str]]],
- # relationships: Dict[str, float],
- # mandatory_attrs: Dict[str, List[str]],
- # base_threshold: float = 0.65,
- # boost_factor: float = 0.15
- # ) -> float:
- # """
- # Calculate dynamic threshold based on relationships with already-extracted attributes.
- # """
- # threshold = base_threshold
- # # Check relationships with already extracted attributes
- # max_relationship = 0.0
- # for other_attr, other_values_list in extracted_attrs.items():
- # if other_attr == attr:
- # continue
- # for other_val_dict in other_values_list:
- # other_val = other_val_dict['value']
- # key = f"{attr}:{val}->{other_attr}:{other_val}"
- # if key in relationships:
- # max_relationship = max(max_relationship, relationships[key])
- # # If strong relationship exists, lower threshold
- # if max_relationship > 0.6:
- # threshold = base_threshold - (boost_factor * max_relationship)
- # return max(0.3, threshold)
- # @staticmethod
- # def get_adaptive_margin(
- # scores: List[Tuple[str, float]],
- # base_margin: float = 0.15,
- # max_margin: float = 0.22
- # ) -> float:
- # """
- # Calculate adaptive margin based on score distribution.
- # """
- # if len(scores) < 2:
- # return base_margin
- # score_values = [s for _, s in scores]
- # best_score = score_values[0]
- # # If best score is very low, use adaptive margin but be more conservative
- # if best_score < 0.5:
- # # Calculate score spread in top 3-4 scores only (more selective)
- # top_scores = score_values[:min(4, len(score_values))]
- # score_range = max(top_scores) - min(top_scores)
- # # Very controlled margin increase
- # if score_range < 0.30:
- # # Much more conservative scaling
- # score_factor = (0.5 - best_score) * 0.35
- # adaptive = base_margin + score_factor + (0.30 - score_range) * 0.2
- # return min(adaptive, max_margin)
- # return base_margin
- # @staticmethod
- # def _lexical_evidence(product_text: str, label: str) -> float:
- # """Calculate lexical overlap between product text and label."""
- # pt = product_text.lower()
- # tokens = [t for t in label.lower().replace("-", " ").split() if t]
- # if not tokens:
- # return 0.0
- # hits = sum(1 for t in tokens if t in pt)
- # return hits / len(tokens)
- # @staticmethod
- # def normalize_against_product_text(
- # product_text: str,
- # mandatory_attrs: Dict[str, List[str]],
- # source_map: Dict[str, str],
- # threshold_abs: float = 0.65,
- # margin: float = 0.15,
- # allow_multiple: bool = False,
- # sem_weight: float = 0.8,
- # lex_weight: float = 0.2,
- # extracted_attrs: Optional[Dict[str, List[Dict[str, str]]]] = None,
- # relationships: Optional[Dict[str, float]] = None,
- # use_dynamic_thresholds: bool = True,
- # use_adaptive_margin: bool = True,
- # use_semantic_clustering: bool = True
- # ) -> dict:
- # """
- # Score each allowed value against the product_text with dynamic thresholds.
- # Returns dict with values in array format: [{"value": "...", "source": "..."}]
- # """
- # if extracted_attrs is None:
- # extracted_attrs = {}
- # if relationships is None:
- # relationships = {}
- # pt_emb = model_embedder.encode(product_text, convert_to_tensor=True)
- # extracted = {}
- # for attr, allowed_values in mandatory_attrs.items():
- # scores: List[Tuple[str, float]] = []
- # for val in allowed_values:
- # contexts = [val, f"for {val}", f"use in {val}", f"suitable for {val}", f"{val} room"]
- # ctx_embs = [model_embedder.encode(c, convert_to_tensor=True) for c in contexts]
- # sem_sim = max(float(util.cos_sim(pt_emb, ce).item()) for ce in ctx_embs)
- # lex_score = ProductAttributeService._lexical_evidence(product_text, val)
- # final_score = sem_weight * sem_sim + lex_weight * lex_score
- # scores.append((val, final_score))
- # scores.sort(key=lambda x: x[1], reverse=True)
- # best_val, best_score = scores[0]
- # # Calculate adaptive margin if enabled
- # effective_margin = margin
- # if allow_multiple and use_adaptive_margin:
- # effective_margin = ProductAttributeService.get_adaptive_margin(scores, margin)
- # if not allow_multiple:
- # source = ProductAttributeService.find_value_source(best_val, source_map)
- # extracted[attr] = [{"value": best_val, "source": source}]
- # else:
- # candidates = [best_val]
- # use_base_threshold = best_score >= threshold_abs
- # # Get semantic clusters if enabled
- # clusters = []
- # if use_semantic_clustering:
- # clusters = ProductAttributeService.calculate_value_clusters(
- # allowed_values, scores, cluster_threshold=0.4
- # )
- # best_cluster = next((c for c in clusters if best_val in c), [best_val])
- # for val, sc in scores[1:]:
- # # Calculate dynamic threshold for this value
- # if use_dynamic_thresholds and extracted_attrs:
- # dynamic_thresh = ProductAttributeService.get_dynamic_threshold(
- # attr, val, sc, extracted_attrs, relationships,
- # mandatory_attrs, threshold_abs
- # )
- # else:
- # dynamic_thresh = threshold_abs
- # within_margin = (best_score - sc) <= effective_margin
- # above_threshold = sc >= dynamic_thresh
- # # Check if in same semantic cluster as best value
- # in_cluster = False
- # if use_semantic_clustering and clusters:
- # in_cluster = any(best_val in c and val in c for c in clusters)
- # if use_base_threshold:
- # # Best score is good, require threshold OR (cluster + margin)
- # if above_threshold and within_margin:
- # candidates.append(val)
- # elif in_cluster and within_margin:
- # candidates.append(val)
- # else:
- # # Best score is low, use margin OR cluster logic
- # if within_margin:
- # candidates.append(val)
- # elif in_cluster and (best_score - sc) <= effective_margin * 2.0:
- # # Extended margin for cluster members
- # candidates.append(val)
- # # Map each candidate to its source and create array format
- # extracted[attr] = []
- # for candidate in candidates:
- # source = ProductAttributeService.find_value_source(candidate, source_map)
- # extracted[attr].append({"value": candidate, "source": source})
- # return extracted
- # @staticmethod
- # def extract_attributes(
- # product_text: str,
- # mandatory_attrs: Dict[str, List[str]],
- # source_map: Dict[str, str] = None,
- # model: str = None,
- # extract_additional: bool = True,
- # multiple: Optional[List[str]] = None,
- # threshold_abs: float = 0.65,
- # margin: float = 0.15,
- # use_dynamic_thresholds: bool = True,
- # use_adaptive_margin: bool = True,
- # use_semantic_clustering: bool = True
- # ) -> dict:
- # """
- # Use Groq LLM to extract attributes from any product type with enhanced multi-value selection.
- # Now returns values in array format: [{"value": "...", "source": "..."}]
- # """
-
- # if model is None:
- # model = settings.SUPPORTED_MODELS[0]
- # if multiple is None:
- # multiple = []
- # if source_map is None:
- # source_map = {}
- # # Check if product text is empty or minimal
- # if not product_text or product_text == "No product information available":
- # return ProductAttributeService._create_error_response(
- # "No product information provided",
- # mandatory_attrs,
- # extract_additional
- # )
- # # Create structured prompt for mandatory attributes
- # mandatory_attr_list = []
- # for attr_name, allowed_values in mandatory_attrs.items():
- # mandatory_attr_list.append(f"{attr_name}: {', '.join(allowed_values)}")
- # mandatory_attr_text = "\n".join(mandatory_attr_list)
- # additional_instruction = ""
- # if extract_additional:
- # additional_instruction = """
- # 2. Extract ADDITIONAL attributes: Identify any other relevant attributes from the product text
- # that are NOT in the mandatory list. Only include attributes where you can find actual values
- # in the product text. Do NOT include attributes with "Not Specified" or empty values.
-
- # Examples of attributes to look for (only if present): Brand, Material, Size, Color, Dimensions,
- # Weight, Features, Style, Theme, Pattern, Finish, Care Instructions, etc."""
- # output_format = {
- # "mandatory": {attr: "value or list of values" for attr in mandatory_attrs.keys()},
- # }
- # if extract_additional:
- # output_format["additional"] = {
- # "example_attribute_1": "actual value found",
- # "example_attribute_2": "actual value found"
- # }
- # output_format["additional"]["_note"] = "Only include attributes with actual values found in text"
- # prompt = f"""
- # You are an intelligent product attribute extractor that works with ANY product type.
- # TASK:
- # 1. Extract MANDATORY attributes: For each mandatory attribute, select the most appropriate value(s)
- # from the provided list. Choose the value(s) that best match the product description.
- # {additional_instruction}
- # Product Text:
- # {product_text}
- # Mandatory Attribute Lists (MUST select from these allowed values):
- # {mandatory_attr_text}
- # CRITICAL INSTRUCTIONS:
- # - Return ONLY valid JSON, nothing else
- # - No explanations, no markdown, no text before or after the JSON
- # - For mandatory attributes, choose the value(s) from the provided list that best match
- # - If a mandatory attribute cannot be determined from the product text, use "Not Specified"
- # - Prefer exact matches from the allowed values list over generic synonyms
- # - If multiple values are plausible, you MAY return more than one
- # {f"- For additional attributes: ONLY include attributes where you found actual values in the product text. DO NOT include attributes with 'Not Specified', 'None', 'N/A', or empty values. If you cannot find a value for an attribute, simply don't include that attribute." if extract_additional else ""}
- # - Be precise and only extract information that is explicitly stated or clearly implied
- # Required Output Format:
- # {json.dumps(output_format, indent=2)}
- # """
- # payload = {
- # "model": model,
- # "messages": [
- # {
- # "role": "system",
- # "content": f"You are a precise attribute extraction model. Return ONLY valid JSON with {'mandatory and additional' if extract_additional else 'mandatory'} sections. No explanations, no markdown, no other text."
- # },
- # {"role": "user", "content": prompt}
- # ],
- # "temperature": 0.0,
- # "max_tokens": 1500
- # }
- # headers = {
- # "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- # "Content-Type": "application/json",
- # }
- # try:
- # response = requests.post(
- # settings.GROQ_API_URL,
- # headers=headers,
- # json=payload,
- # timeout=30
- # )
- # response.raise_for_status()
- # result_text = response.json()["choices"][0]["message"]["content"].strip()
- # # Clean the response
- # result_text = ProductAttributeService._clean_json_response(result_text)
- # # Parse JSON
- # parsed = json.loads(result_text)
- # # Validate and restructure with source tracking
- # parsed = ProductAttributeService._validate_response_structure(
- # parsed, mandatory_attrs, extract_additional, source_map
- # )
- # # Clean up and add source tracking to additional attributes in array format
- # if extract_additional and "additional" in parsed:
- # cleaned_additional = {}
- # for k, v in parsed["additional"].items():
- # if v and v not in ["Not Specified", "None", "N/A", "", "not specified", "none", "n/a"]:
- # if not (isinstance(v, str) and v.lower() in ["not specified", "none", "n/a", ""]):
- # # Convert to array format if not already
- # if isinstance(v, list):
- # cleaned_additional[k] = []
- # for item in v:
- # if isinstance(item, dict) and "value" in item:
- # if "source" not in item:
- # item["source"] = ProductAttributeService.find_value_source(
- # item["value"], source_map
- # )
- # cleaned_additional[k].append(item)
- # else:
- # source = ProductAttributeService.find_value_source(str(item), source_map)
- # cleaned_additional[k].append({"value": str(item), "source": source})
- # else:
- # source = ProductAttributeService.find_value_source(str(v), source_map)
- # cleaned_additional[k] = [{"value": str(v), "source": source}]
- # parsed["additional"] = cleaned_additional
- # # Calculate attribute relationships if using dynamic thresholds
- # relationships = {}
- # if use_dynamic_thresholds:
- # relationships = ProductAttributeService.calculate_attribute_relationships(
- # mandatory_attrs, product_text
- # )
- # # Process attributes in order, allowing earlier ones to influence later ones
- # extracted_so_far = {}
- # for attr in mandatory_attrs.keys():
- # allow_multiple = attr in multiple
- # result = ProductAttributeService.normalize_against_product_text(
- # product_text=product_text,
- # mandatory_attrs={attr: mandatory_attrs[attr]},
- # source_map=source_map,
- # threshold_abs=threshold_abs,
- # margin=margin,
- # allow_multiple=allow_multiple,
- # extracted_attrs=extracted_so_far,
- # relationships=relationships,
- # use_dynamic_thresholds=use_dynamic_thresholds,
- # use_adaptive_margin=use_adaptive_margin,
- # use_semantic_clustering=use_semantic_clustering
- # )
- # # Result is already in array format from normalize_against_product_text
- # parsed["mandatory"][attr] = result[attr]
- # extracted_so_far[attr] = result[attr]
- # return parsed
- # except requests.exceptions.RequestException as e:
- # return ProductAttributeService._create_error_response(
- # str(e), mandatory_attrs, extract_additional
- # )
- # except json.JSONDecodeError as e:
- # return ProductAttributeService._create_error_response(
- # f"Invalid JSON: {str(e)}", mandatory_attrs, extract_additional, result_text
- # )
- # except Exception as e:
- # return ProductAttributeService._create_error_response(
- # str(e), mandatory_attrs, extract_additional
- # )
- # @staticmethod
- # def extract_attributes_batch(
- # products: List[Dict],
- # mandatory_attrs: Dict[str, List[str]],
- # model: str = None,
- # extract_additional: bool = True,
- # process_image: bool = True,
- # max_workers: int = 5,
- # multiple: Optional[List[str]] = None,
- # threshold_abs: float = 0.65,
- # margin: float = 0.15,
- # use_dynamic_thresholds: bool = True,
- # use_adaptive_margin: bool = True,
- # use_semantic_clustering: bool = True
- # ) -> Dict:
- # """Extract attributes for multiple products in parallel with enhanced multi-value selection and source tracking."""
- # results = []
- # successful = 0
- # failed = 0
-
- # ocr_service = OCRService()
- # if multiple is None:
- # multiple = []
- # def process_product(product_data):
- # """Process a single product."""
- # product_id = product_data.get('product_id', f"product_{len(results)}")
-
- # try:
- # # Process image if URL is provided
- # ocr_results = None
- # ocr_text = None
-
- # if process_image and product_data.get('image_url'):
- # ocr_results = ocr_service.process_image(product_data['image_url'])
-
- # # Extract attributes from OCR
- # if ocr_results and ocr_results.get('detected_text'):
- # ocr_attrs = ProductAttributeService.extract_attributes_from_ocr(
- # ocr_results, model
- # )
- # ocr_results['extracted_attributes'] = ocr_attrs
-
- # # Format OCR text for combining with product text
- # ocr_text = "\n".join([
- # f"{item['text']} (confidence: {item['confidence']:.2f})"
- # for item in ocr_results['detected_text']
- # ])
-
- # # Combine all product information with source tracking
- # product_text, source_map = ProductAttributeService.combine_product_text(
- # title=product_data.get('title'),
- # short_desc=product_data.get('short_desc'),
- # long_desc=product_data.get('long_desc'),
- # ocr_text=ocr_text
- # )
-
- # # Extract attributes from combined text with enhanced features
- # result = ProductAttributeService.extract_attributes(
- # product_text=product_text,
- # mandatory_attrs=mandatory_attrs,
- # source_map=source_map,
- # model=model,
- # extract_additional=extract_additional,
- # multiple=multiple,
- # threshold_abs=threshold_abs,
- # margin=margin,
- # use_dynamic_thresholds=use_dynamic_thresholds,
- # use_adaptive_margin=use_adaptive_margin,
- # use_semantic_clustering=use_semantic_clustering
- # )
-
- # result['product_id'] = product_id
-
- # # Add OCR results if available (already in correct format)
- # if ocr_results:
- # result['ocr_results'] = ocr_results
-
- # # Check if extraction was successful
- # if 'error' not in result:
- # return result, True
- # else:
- # return result, False
-
- # except Exception as e:
- # return {
- # 'product_id': product_id,
- # 'mandatory': {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- # 'additional': {} if extract_additional else None,
- # 'error': f"Processing error: {str(e)}"
- # }, False
- # # Process products in parallel
- # with ThreadPoolExecutor(max_workers=max_workers) as executor:
- # future_to_product = {
- # executor.submit(process_product, product): product
- # for product in products
- # }
-
- # for future in as_completed(future_to_product):
- # try:
- # result, success = future.result()
- # results.append(result)
- # if success:
- # successful += 1
- # else:
- # failed += 1
- # except Exception as e:
- # failed += 1
- # results.append({
- # 'product_id': 'unknown',
- # 'mandatory': {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- # 'additional': {} if extract_additional else None,
- # 'error': f"Unexpected error: {str(e)}"
- # })
- # return {
- # 'results': results,
- # 'total_products': len(products),
- # 'successful': successful,
- # 'failed': failed
- # }
- # @staticmethod
- # def _clean_json_response(text: str) -> str:
- # """Clean LLM response to extract valid JSON."""
- # start_idx = text.find('{')
- # end_idx = text.rfind('}')
- # if start_idx != -1 and end_idx != -1:
- # text = text[start_idx:end_idx + 1]
- # if "```json" in text:
- # text = text.split("```json")[1].split("```")[0].strip()
- # elif "```" in text:
- # text = text.split("```")[1].split("```")[0].strip()
- # if text.startswith("json"):
- # text = text[4:].strip()
- # return text
- # @staticmethod
- # def _validate_response_structure(
- # parsed: dict,
- # mandatory_attrs: Dict[str, List[str]],
- # extract_additional: bool,
- # source_map: Dict[str, str] = None
- # ) -> dict:
- # """Validate and fix the response structure, ensuring array format with source tracking."""
- # if source_map is None:
- # source_map = {}
-
- # expected_sections = ["mandatory"]
- # if extract_additional:
- # expected_sections.append("additional")
- # if not all(section in parsed for section in expected_sections):
- # if isinstance(parsed, dict):
- # mandatory_keys = set(mandatory_attrs.keys())
- # mandatory = {k: v for k, v in parsed.items() if k in mandatory_keys}
- # additional = {k: v for k, v in parsed.items() if k not in mandatory_keys}
- # result = {"mandatory": mandatory}
- # if extract_additional:
- # result["additional"] = additional
- # parsed = result
- # else:
- # return ProductAttributeService._create_error_response(
- # "Invalid response structure",
- # mandatory_attrs,
- # extract_additional,
- # str(parsed)
- # )
- # # Convert mandatory attributes to array format with source tracking
- # if "mandatory" in parsed:
- # converted_mandatory = {}
- # for attr, value in parsed["mandatory"].items():
- # if isinstance(value, list):
- # # Already in array format, ensure each item has source
- # converted_mandatory[attr] = []
- # for item in value:
- # if isinstance(item, dict) and "value" in item:
- # # Already has proper structure
- # if "source" not in item:
- # item["source"] = ProductAttributeService.find_value_source(
- # item["value"], source_map
- # )
- # converted_mandatory[attr].append(item)
- # else:
- # # Convert string to proper format
- # source = ProductAttributeService.find_value_source(str(item), source_map)
- # converted_mandatory[attr].append({"value": str(item), "source": source})
- # else:
- # # Single value - convert to array format
- # source = ProductAttributeService.find_value_source(str(value), source_map)
- # converted_mandatory[attr] = [{"value": str(value), "source": source}]
-
- # parsed["mandatory"] = converted_mandatory
- # return parsed
- # @staticmethod
- # def _create_error_response(
- # error: str,
- # mandatory_attrs: Dict[str, List[str]],
- # extract_additional: bool,
- # raw_output: Optional[str] = None
- # ) -> dict:
- # """Create a standardized error response in array format."""
- # response = {
- # "mandatory": {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- # "error": error
- # }
- # if extract_additional:
- # response["additional"] = {}
- # if raw_output:
- # response["raw_output"] = raw_output
- # return response
- # ==================== services.py ====================
- import requests
- import json
- import re
- from typing import Dict, List, Optional, Tuple
- from django.conf import settings
- from concurrent.futures import ThreadPoolExecutor, as_completed
- from sentence_transformers import SentenceTransformer, util
- import numpy as np
- from .ocr_service import OCRService
- # Initialize embedding model for normalization
- model_embedder = SentenceTransformer("all-MiniLM-L6-v2")
- class ProductAttributeService:
- """Service class for extracting product attributes using Groq LLM."""
- @staticmethod
- def normalize_dimension_text(text: str) -> str:
- """
- Normalize dimension text to match format like '16x20', '20x30', etc.
- Handles formats like '16 x 20', '16x1.5x20', '16 x 1.5 x 20 Inches'
- Returns the normalized dimension (e.g., '16x20') or empty string if not found.
- """
- if not text:
- return ""
-
- # Convert to lowercase and remove common units
- text = text.lower()
- text = re.sub(r'\s*(inches|inch|in|cm|centimeters|mm|millimeters)\s*', '', text, flags=re.IGNORECASE)
-
- # Extract all numbers from the text
- numbers = re.findall(r'\d+\.?\d*', text)
-
- if not numbers:
- return ""
-
- # Convert to floats first to handle decimals properly
- float_numbers = []
- for num in numbers:
- try:
- float_numbers.append(float(num))
- except:
- continue
-
- if len(float_numbers) < 2:
- return ""
-
- # If we have 3 dimensions, it's likely Width x Depth x Height
- # For wall art, depth is usually small (< 5), so we keep first and last
- if len(float_numbers) == 3:
- # Keep first and last values (width and height), skip middle (depth)
- float_numbers = [float_numbers[0], float_numbers[2]]
- elif len(float_numbers) > 3:
- # If more than 3 dimensions, keep the two largest
- float_numbers = sorted(float_numbers)[-2:]
- else:
- # Just 2 dimensions, use as is
- float_numbers = float_numbers[:2]
-
- # Format numbers: use integer if whole, else one decimal
- formatted_numbers = []
- for num in float_numbers:
- if num.is_integer():
- formatted_numbers.append(str(int(num)))
- else:
- formatted_numbers.append(f"{num:.1f}")
-
- # Sort to ensure consistent order (smaller x larger)
- formatted_numbers.sort(key=lambda x: float(x))
-
- # Return formatted dimension
- return f"{formatted_numbers[0]}x{formatted_numbers[1]}"
-
-
- @staticmethod
- def normalize_value_for_matching(value: str, attr_name: str = "") -> str:
- """
- Normalize a value based on its attribute type for better matching.
- Currently handles dimensions specially, can be extended for other attributes.
- """
- # Check if this is a dimension-related attribute
- dimension_keywords = ['dimension', 'size', 'measurement']
- if any(keyword in attr_name.lower() for keyword in dimension_keywords):
- normalized = ProductAttributeService.normalize_dimension_text(value)
- if normalized:
- return normalized
-
- # For other attributes, just return cleaned value
- return value.strip()
- @staticmethod
- def combine_product_text(
- title: Optional[str] = None,
- short_desc: Optional[str] = None,
- long_desc: Optional[str] = None,
- ocr_text: Optional[str] = None
- ) -> Tuple[str, Dict[str, str]]:
- """
- Combine product metadata into a single text block.
- Returns: (combined_text, source_map) where source_map tracks which text came from where
- """
- parts = []
- source_map = {}
-
- if title:
- title_str = str(title).strip()
- parts.append(f"Title: {title_str}")
- source_map['title'] = title_str
- if short_desc:
- short_str = str(short_desc).strip()
- parts.append(f"Description: {short_str}")
- source_map['short_desc'] = short_str
- if long_desc:
- long_str = str(long_desc).strip()
- parts.append(f"Details: {long_str}")
- source_map['long_desc'] = long_str
- if ocr_text:
- parts.append(f"OCR Text: {ocr_text}")
- source_map['ocr_text'] = ocr_text
-
- combined = "\n".join(parts).strip()
-
- if not combined:
- return "No product information available", {}
-
- return combined, source_map
- @staticmethod
- def find_value_source(value: str, source_map: Dict[str, str], attr_name: str = "") -> str:
- """
- Find which source(s) contain the given value.
- Returns the source name(s) where the value appears.
- Now handles normalized matching for dimensions.
- """
- value_lower = value.lower()
- # Split value into tokens for better matching
- value_tokens = set(value_lower.replace("-", " ").replace("x", " ").split())
-
- # Check if this is a dimension-related attribute
- is_dimension_attr = any(keyword in attr_name.lower() for keyword in ['dimension', 'size', 'measurement'])
-
- sources_found = []
- source_scores = {}
-
- for source_name, source_text in source_map.items():
- source_lower = source_text.lower()
-
- # Check for exact phrase match first
- if value_lower in source_lower:
- source_scores[source_name] = 1.0
- continue
-
- # For dimensions, check normalized match
- if is_dimension_attr:
- # Normalize the value (e.g., "16x20" stays "16x20")
- normalized_value = ProductAttributeService.normalize_dimension_text(value)
- if not normalized_value:
- normalized_value = value.replace("x", " ").strip()
-
- # Normalize the source text to extract dimensions
- normalized_source = ProductAttributeService.normalize_dimension_text(source_text)
-
- # Direct match
- if normalized_value == normalized_source:
- source_scores[source_name] = 0.95
- continue
-
- # Also check if the dimension numbers appear in the source
- # Extract dimension parts (e.g., "16x20" -> ["16", "20"])
- dim_parts = normalized_value.split("x") if "x" in normalized_value else []
- if len(dim_parts) == 2:
- # Check if both numbers appear in the source
- if all(part in source_text for part in dim_parts):
- source_scores[source_name] = 0.85
- continue
-
- # Check for token matches
- token_matches = sum(1 for token in value_tokens if token and token in source_lower)
- if token_matches > 0 and len(value_tokens) > 0:
- source_scores[source_name] = token_matches / len(value_tokens)
-
- # Return source with highest score, or all sources if multiple have same score
- if source_scores:
- max_score = max(source_scores.values())
- sources_found = [s for s, score in source_scores.items() if score == max_score]
-
- # Prioritize: title > short_desc > long_desc > ocr_text
- priority = ['title', 'short_desc', 'long_desc', 'ocr_text']
- for p in priority:
- if p in sources_found:
- return p
-
- return sources_found[0] if sources_found else "Not found"
-
- return "Not found"
- @staticmethod
- def format_visual_attributes(visual_attributes: Dict) -> Dict:
- """
- Convert visual attributes to array format with source tracking.
- Source is always 'image' for visual attributes.
- """
- formatted = {}
-
- for key, value in visual_attributes.items():
- if isinstance(value, list):
- # Already a list (like color_palette)
- formatted[key] = [{"value": str(item), "source": "image"} for item in value]
- elif isinstance(value, dict):
- # Nested dictionary - format recursively
- nested_formatted = {}
- for nested_key, nested_value in value.items():
- if isinstance(nested_value, list):
- nested_formatted[nested_key] = [{"value": str(item), "source": "image"} for item in nested_value]
- else:
- nested_formatted[nested_key] = [{"value": str(nested_value), "source": "image"}]
- formatted[key] = nested_formatted
- else:
- # Single value
- formatted[key] = [{"value": str(value), "source": "image"}]
-
- return formatted
- @staticmethod
- def extract_attributes_from_ocr(ocr_results: Dict, model: str = None) -> Dict:
- """Extract structured attributes from OCR text using LLM."""
- if model is None:
- model = settings.SUPPORTED_MODELS[0]
-
- detected_text = ocr_results.get('detected_text', [])
- if not detected_text:
- return {}
-
- # Format OCR text for prompt
- ocr_text = "\n".join([f"Text: {item['text']}, Confidence: {item['confidence']:.2f}"
- for item in detected_text])
-
- prompt = f"""
- You are an AI model that extracts structured attributes from OCR text detected on product images.
- Given the OCR detections below, infer the possible product attributes and return them as a clean JSON object.
- OCR Text:
- {ocr_text}
- Extract relevant attributes like:
- - brand
- - model_number
- - size (waist_size, length, etc.)
- - collection
- - any other relevant product information
- Return a JSON object with only the attributes you can confidently identify.
- If an attribute is not present, do not include it in the response.
- """
-
- payload = {
- "model": model,
- "messages": [
- {
- "role": "system",
- "content": "You are a helpful AI that extracts structured data from OCR output. Return only valid JSON."
- },
- {"role": "user", "content": prompt}
- ],
- "temperature": 0.2,
- "max_tokens": 500
- }
-
- headers = {
- "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- "Content-Type": "application/json",
- }
-
- try:
- response = requests.post(
- settings.GROQ_API_URL,
- headers=headers,
- json=payload,
- timeout=30
- )
- response.raise_for_status()
- result_text = response.json()["choices"][0]["message"]["content"].strip()
-
- # Clean and parse JSON
- result_text = ProductAttributeService._clean_json_response(result_text)
- parsed = json.loads(result_text)
-
- # Convert to array format with source tracking
- formatted_attributes = {}
- for key, value in parsed.items():
- if key == "error":
- continue
-
- # Handle nested dictionaries (like size)
- if isinstance(value, dict):
- nested_formatted = {}
- for nested_key, nested_value in value.items():
- nested_formatted[nested_key] = [{"value": str(nested_value), "source": "image"}]
- formatted_attributes[key] = nested_formatted
- elif isinstance(value, list):
- # Already a list, convert each item
- formatted_attributes[key] = [{"value": str(item), "source": "image"} for item in value]
- else:
- # Single value
- formatted_attributes[key] = [{"value": str(value), "source": "image"}]
-
- return formatted_attributes
- except Exception as e:
- return {"error": f"Failed to extract attributes from OCR: {str(e)}"}
- @staticmethod
- def calculate_attribute_relationships(
- mandatory_attrs: Dict[str, List[str]],
- product_text: str
- ) -> Dict[str, float]:
- """
- Calculate semantic relationships between attribute values across different attributes.
- Returns a matrix of cross-attribute value similarities.
- """
- pt_emb = model_embedder.encode(product_text, convert_to_tensor=True)
- # Calculate similarities between all attribute values and product text
- attr_scores = {}
- for attr, values in mandatory_attrs.items():
- attr_scores[attr] = {}
- for val in values:
- contexts = [val, f"for {val}", f"use in {val}", f"suitable for {val}"]
- ctx_embs = [model_embedder.encode(c, convert_to_tensor=True) for c in contexts]
- sem_sim = max(float(util.cos_sim(pt_emb, ce).item()) for ce in ctx_embs)
- attr_scores[attr][val] = sem_sim
- # Calculate cross-attribute value relationships
- relationships = {}
- attr_list = list(mandatory_attrs.keys())
- for i, attr1 in enumerate(attr_list):
- for attr2 in attr_list[i+1:]:
- # Calculate pairwise similarities between values of different attributes
- for val1 in mandatory_attrs[attr1]:
- for val2 in mandatory_attrs[attr2]:
- emb1 = model_embedder.encode(val1, convert_to_tensor=True)
- emb2 = model_embedder.encode(val2, convert_to_tensor=True)
- sim = float(util.cos_sim(emb1, emb2).item())
- # Store bidirectional relationships
- key1 = f"{attr1}:{val1}->{attr2}:{val2}"
- key2 = f"{attr2}:{val2}->{attr1}:{val1}"
- relationships[key1] = sim
- relationships[key2] = sim
- return relationships
- @staticmethod
- def calculate_value_clusters(
- values: List[str],
- scores: List[Tuple[str, float]],
- cluster_threshold: float = 0.4
- ) -> List[List[str]]:
- """
- Group values into semantic clusters based on their similarity to each other.
- Returns clusters of related values.
- """
- if len(values) <= 1:
- return [[val] for val, _ in scores]
- # Get embeddings for all values
- embeddings = [model_embedder.encode(val, convert_to_tensor=True) for val in values]
- # Calculate pairwise similarities
- similarity_matrix = np.zeros((len(values), len(values)))
- for i in range(len(values)):
- for j in range(i+1, len(values)):
- sim = float(util.cos_sim(embeddings[i], embeddings[j]).item())
- similarity_matrix[i][j] = sim
- similarity_matrix[j][i] = sim
- # Simple clustering: group values with high similarity
- clusters = []
- visited = set()
- for i, (val, score) in enumerate(scores):
- if i in visited:
- continue
- cluster = [val]
- visited.add(i)
- # Find similar values
- for j in range(len(values)):
- if j not in visited and similarity_matrix[i][j] >= cluster_threshold:
- cluster.append(values[j])
- visited.add(j)
- clusters.append(cluster)
- return clusters
- @staticmethod
- def get_dynamic_threshold(
- attr: str,
- val: str,
- base_score: float,
- extracted_attrs: Dict[str, List[Dict[str, str]]],
- relationships: Dict[str, float],
- mandatory_attrs: Dict[str, List[str]],
- base_threshold: float = 0.65,
- boost_factor: float = 0.15
- ) -> float:
- """
- Calculate dynamic threshold based on relationships with already-extracted attributes.
- """
- threshold = base_threshold
- # Check relationships with already extracted attributes
- max_relationship = 0.0
- for other_attr, other_values_list in extracted_attrs.items():
- if other_attr == attr:
- continue
- for other_val_dict in other_values_list:
- other_val = other_val_dict['value']
- key = f"{attr}:{val}->{other_attr}:{other_val}"
- if key in relationships:
- max_relationship = max(max_relationship, relationships[key])
- # If strong relationship exists, lower threshold
- if max_relationship > 0.6:
- threshold = base_threshold - (boost_factor * max_relationship)
- return max(0.3, threshold)
- @staticmethod
- def get_adaptive_margin(
- scores: List[Tuple[str, float]],
- base_margin: float = 0.15,
- max_margin: float = 0.22
- ) -> float:
- """
- Calculate adaptive margin based on score distribution.
- """
- if len(scores) < 2:
- return base_margin
- score_values = [s for _, s in scores]
- best_score = score_values[0]
- # If best score is very low, use adaptive margin but be more conservative
- if best_score < 0.5:
- # Calculate score spread in top 3-4 scores only (more selective)
- top_scores = score_values[:min(4, len(score_values))]
- score_range = max(top_scores) - min(top_scores)
- # Very controlled margin increase
- if score_range < 0.30:
- # Much more conservative scaling
- score_factor = (0.5 - best_score) * 0.35
- adaptive = base_margin + score_factor + (0.30 - score_range) * 0.2
- return min(adaptive, max_margin)
- return base_margin
- @staticmethod
- def _lexical_evidence(product_text: str, label: str) -> float:
- """Calculate lexical overlap between product text and label."""
- pt = product_text.lower()
- tokens = [t for t in label.lower().replace("-", " ").split() if t]
- if not tokens:
- return 0.0
- hits = sum(1 for t in tokens if t in pt)
- return hits / len(tokens)
- @staticmethod
- def normalize_against_product_text(
- product_text: str,
- mandatory_attrs: Dict[str, List[str]],
- source_map: Dict[str, str],
- threshold_abs: float = 0.65,
- margin: float = 0.15,
- allow_multiple: bool = False,
- sem_weight: float = 0.8,
- lex_weight: float = 0.2,
- extracted_attrs: Optional[Dict[str, List[Dict[str, str]]]] = None,
- relationships: Optional[Dict[str, float]] = None,
- use_dynamic_thresholds: bool = True,
- use_adaptive_margin: bool = True,
- use_semantic_clustering: bool = True
- ) -> dict:
- """
- Score each allowed value against the product_text with dynamic thresholds.
- Returns dict with values in array format: [{"value": "...", "source": "..."}]
- """
- if extracted_attrs is None:
- extracted_attrs = {}
- if relationships is None:
- relationships = {}
- pt_emb = model_embedder.encode(product_text, convert_to_tensor=True)
- extracted = {}
- for attr, allowed_values in mandatory_attrs.items():
- scores: List[Tuple[str, float]] = []
-
- # Check if this is a dimension attribute
- is_dimension_attr = any(keyword in attr.lower() for keyword in ['dimension', 'size', 'measurement'])
-
- # Normalize product text once for dimension matching
- normalized_product_text = ProductAttributeService.normalize_dimension_text(product_text) if is_dimension_attr else ""
- for val in allowed_values:
- # For dimension attributes, try exact normalized matching first
- if is_dimension_attr:
- # Normalize the allowed value from the list
- normalized_val = ProductAttributeService.normalize_dimension_text(val)
-
- # If we have both normalized values and they match exactly, give highest score
- if normalized_val and normalized_product_text and normalized_val == normalized_product_text:
- scores.append((val, 1.0))
- continue
-
- # Also check if the normalized value appears in the original product text
- # This handles cases where the format might be slightly different
- if normalized_val:
- # Extract just the numbers for flexible matching
- val_numbers = normalized_val.split('x')
- # Check if both numbers appear in the product text in close proximity
- text_lower = product_text.lower()
- if all(num in text_lower for num in val_numbers):
- # Calculate proximity score
- idx1 = text_lower.find(val_numbers[0])
- idx2 = text_lower.find(val_numbers[1])
- if idx1 != -1 and idx2 != -1:
- distance = abs(idx2 - idx1)
- # If numbers are close together (within 20 characters), high score
- if distance < 20:
- scores.append((val, 0.95))
- continue
-
- # Standard semantic matching for all attributes
- contexts = [val, f"for {val}", f"use in {val}", f"suitable for {val}", f"{val} room"]
- ctx_embs = [model_embedder.encode(c, convert_to_tensor=True) for c in contexts]
- sem_sim = max(float(util.cos_sim(pt_emb, ce).item()) for ce in ctx_embs)
- lex_score = ProductAttributeService._lexical_evidence(product_text, val)
- final_score = sem_weight * sem_sim + lex_weight * lex_score
- scores.append((val, final_score))
- scores.sort(key=lambda x: x[1], reverse=True)
- best_val, best_score = scores[0]
- # Calculate adaptive margin if enabled
- effective_margin = margin
- if allow_multiple and use_adaptive_margin:
- effective_margin = ProductAttributeService.get_adaptive_margin(scores, margin)
- # Special handling for dimension attributes with exact matches
- # If we have a very high score (0.90+), it means we found an exact/normalized match
- # In this case, don't apply multiple selection logic - just return the best match
- if is_dimension_attr and best_score >= 0.90:
- source = ProductAttributeService.find_value_source(best_val, source_map, attr)
- extracted[attr] = [{"value": best_val, "source": source}]
- continue
- if not allow_multiple:
- source = ProductAttributeService.find_value_source(best_val, source_map, attr)
- extracted[attr] = [{"value": best_val, "source": source}]
- else:
- candidates = [best_val]
- use_base_threshold = best_score >= threshold_abs
- # Get semantic clusters if enabled
- clusters = []
- if use_semantic_clustering:
- clusters = ProductAttributeService.calculate_value_clusters(
- allowed_values, scores, cluster_threshold=0.4
- )
- best_cluster = next((c for c in clusters if best_val in c), [best_val])
- for val, sc in scores[1:]:
- # Skip values with very low scores
- min_score = 0.4 if is_dimension_attr else 0.3
- if sc < min_score:
- continue
-
- # Calculate dynamic threshold for this value
- if use_dynamic_thresholds and extracted_attrs:
- dynamic_thresh = ProductAttributeService.get_dynamic_threshold(
- attr, val, sc, extracted_attrs, relationships,
- mandatory_attrs, threshold_abs
- )
- else:
- dynamic_thresh = threshold_abs
- within_margin = (best_score - sc) <= effective_margin
- above_threshold = sc >= dynamic_thresh
- # Check if in same semantic cluster as best value
- in_cluster = False
- if use_semantic_clustering and clusters:
- in_cluster = any(best_val in c and val in c for c in clusters)
- if use_base_threshold:
- # Best score is good, require threshold OR (cluster + margin)
- if above_threshold and within_margin:
- candidates.append(val)
- elif in_cluster and within_margin:
- candidates.append(val)
- else:
- # Best score is low, use margin OR cluster logic
- if within_margin:
- candidates.append(val)
- elif in_cluster and (best_score - sc) <= effective_margin * 2.0:
- # Extended margin for cluster members
- candidates.append(val)
- # Map each candidate to its source and create array format
- extracted[attr] = []
- for candidate in candidates:
- source = ProductAttributeService.find_value_source(candidate, source_map, attr)
- extracted[attr].append({"value": candidate, "source": source})
- return extracted
- @staticmethod
- def extract_attributes(
- product_text: str,
- mandatory_attrs: Dict[str, List[str]],
- source_map: Dict[str, str] = None,
- model: str = None,
- extract_additional: bool = True,
- multiple: Optional[List[str]] = None,
- threshold_abs: float = 0.65,
- margin: float = 0.15,
- use_dynamic_thresholds: bool = True,
- use_adaptive_margin: bool = True,
- use_semantic_clustering: bool = True
- ) -> dict:
- """
- Use Groq LLM to extract attributes from any product type with enhanced multi-value selection.
- Now returns values in array format: [{"value": "...", "source": "..."}]
- """
-
- if model is None:
- model = settings.SUPPORTED_MODELS[0]
- if multiple is None:
- multiple = []
- if source_map is None:
- source_map = {}
- # Check if product text is empty or minimal
- if not product_text or product_text == "No product information available":
- return ProductAttributeService._create_error_response(
- "No product information provided",
- mandatory_attrs,
- extract_additional
- )
- # Create structured prompt for mandatory attributes
- mandatory_attr_list = []
- for attr_name, allowed_values in mandatory_attrs.items():
- mandatory_attr_list.append(f"{attr_name}: {', '.join(allowed_values)}")
- mandatory_attr_text = "\n".join(mandatory_attr_list)
- additional_instruction = ""
- if extract_additional:
- additional_instruction = """
- 2. Extract ADDITIONAL attributes: Identify any other relevant attributes from the product text
- that are NOT in the mandatory list. Only include attributes where you can find actual values
- in the product text. Do NOT include attributes with "Not Specified" or empty values.
-
- Examples of attributes to look for (only if present): Brand, Material, Size, Color, Dimensions,
- Weight, Features, Style, Theme, Pattern, Finish, Care Instructions, etc."""
- output_format = {
- "mandatory": {attr: "value or list of values" for attr in mandatory_attrs.keys()},
- }
- if extract_additional:
- output_format["additional"] = {
- "example_attribute_1": "actual value found",
- "example_attribute_2": "actual value found"
- }
- output_format["additional"]["_note"] = "Only include attributes with actual values found in text"
- prompt = f"""
- You are an intelligent product attribute extractor that works with ANY product type.
- TASK:
- 1. Extract MANDATORY attributes: For each mandatory attribute, select the most appropriate value(s)
- from the provided list. Choose the value(s) that best match the product description.
- {additional_instruction}
- Product Text:
- {product_text}
- Mandatory Attribute Lists (MUST select from these allowed values):
- {mandatory_attr_text}
- CRITICAL INSTRUCTIONS:
- - Return ONLY valid JSON, nothing else
- - No explanations, no markdown, no text before or after the JSON
- - For mandatory attributes, choose the value(s) from the provided list that best match
- - If a mandatory attribute cannot be determined from the product text, use "Not Specified"
- - Prefer exact matches from the allowed values list over generic synonyms
- - If multiple values are plausible, you MAY return more than one
- {f"- For additional attributes: ONLY include attributes where you found actual values in the product text. DO NOT include attributes with 'Not Specified', 'None', 'N/A', or empty values. If you cannot find a value for an attribute, simply don't include that attribute." if extract_additional else ""}
- - Be precise and only extract information that is explicitly stated or clearly implied
- Required Output Format:
- {json.dumps(output_format, indent=2)}
- """
- payload = {
- "model": model,
- "messages": [
- {
- "role": "system",
- "content": f"You are a precise attribute extraction model. Return ONLY valid JSON with {'mandatory and additional' if extract_additional else 'mandatory'} sections. No explanations, no markdown, no other text."
- },
- {"role": "user", "content": prompt}
- ],
- "temperature": 0.0,
- "max_tokens": 1500
- }
- headers = {
- "Authorization": f"Bearer {settings.GROQ_API_KEY}",
- "Content-Type": "application/json",
- }
- try:
- response = requests.post(
- settings.GROQ_API_URL,
- headers=headers,
- json=payload,
- timeout=30
- )
- response.raise_for_status()
- result_text = response.json()["choices"][0]["message"]["content"].strip()
- # Clean the response
- result_text = ProductAttributeService._clean_json_response(result_text)
- # Parse JSON
- parsed = json.loads(result_text)
- # Validate and restructure with source tracking
- parsed = ProductAttributeService._validate_response_structure(
- parsed, mandatory_attrs, extract_additional, source_map
- )
- # Clean up and add source tracking to additional attributes in array format
- if extract_additional and "additional" in parsed:
- cleaned_additional = {}
- for k, v in parsed["additional"].items():
- if v and v not in ["Not Specified", "None", "N/A", "", "not specified", "none", "n/a"]:
- if not (isinstance(v, str) and v.lower() in ["not specified", "none", "n/a", ""]):
- # Convert to array format if not already
- if isinstance(v, list):
- cleaned_additional[k] = []
- for item in v:
- if isinstance(item, dict) and "value" in item:
- if "source" not in item:
- item["source"] = ProductAttributeService.find_value_source(
- item["value"], source_map, k
- )
- cleaned_additional[k].append(item)
- else:
- source = ProductAttributeService.find_value_source(str(item), source_map, k)
- cleaned_additional[k].append({"value": str(item), "source": source})
- else:
- source = ProductAttributeService.find_value_source(str(v), source_map, k)
- cleaned_additional[k] = [{"value": str(v), "source": source}]
- parsed["additional"] = cleaned_additional
- # Calculate attribute relationships if using dynamic thresholds
- relationships = {}
- if use_dynamic_thresholds:
- relationships = ProductAttributeService.calculate_attribute_relationships(
- mandatory_attrs, product_text
- )
- # Process attributes in order, allowing earlier ones to influence later ones
- extracted_so_far = {}
- for attr in mandatory_attrs.keys():
- allow_multiple = attr in multiple
- result = ProductAttributeService.normalize_against_product_text(
- product_text=product_text,
- mandatory_attrs={attr: mandatory_attrs[attr]},
- source_map=source_map,
- threshold_abs=threshold_abs,
- margin=margin,
- allow_multiple=allow_multiple,
- extracted_attrs=extracted_so_far,
- relationships=relationships,
- use_dynamic_thresholds=use_dynamic_thresholds,
- use_adaptive_margin=use_adaptive_margin,
- use_semantic_clustering=use_semantic_clustering
- )
- # Result is already in array format from normalize_against_product_text
- parsed["mandatory"][attr] = result[attr]
- extracted_so_far[attr] = result[attr]
- return parsed
- except requests.exceptions.RequestException as e:
- return ProductAttributeService._create_error_response(
- str(e), mandatory_attrs, extract_additional
- )
- except json.JSONDecodeError as e:
- return ProductAttributeService._create_error_response(
- f"Invalid JSON: {str(e)}", mandatory_attrs, extract_additional, result_text
- )
- except Exception as e:
- return ProductAttributeService._create_error_response(
- str(e), mandatory_attrs, extract_additional
- )
- @staticmethod
- def extract_attributes_batch(
- products: List[Dict],
- mandatory_attrs: Dict[str, List[str]],
- model: str = None,
- extract_additional: bool = True,
- process_image: bool = True,
- max_workers: int = 5,
- multiple: Optional[List[str]] = None,
- threshold_abs: float = 0.65,
- margin: float = 0.15,
- use_dynamic_thresholds: bool = True,
- use_adaptive_margin: bool = True,
- use_semantic_clustering: bool = True
- ) -> Dict:
- """Extract attributes for multiple products in parallel with enhanced multi-value selection and source tracking."""
- results = []
- successful = 0
- failed = 0
-
- ocr_service = OCRService()
- if multiple is None:
- multiple = []
- def process_product(product_data):
- """Process a single product."""
- product_id = product_data.get('product_id', f"product_{len(results)}")
-
- try:
- # Process image if URL is provided
- ocr_results = None
- ocr_text = None
-
- if process_image and product_data.get('image_url'):
- ocr_results = ocr_service.process_image(product_data['image_url'])
-
- # Extract attributes from OCR
- if ocr_results and ocr_results.get('detected_text'):
- ocr_attrs = ProductAttributeService.extract_attributes_from_ocr(
- ocr_results, model
- )
- ocr_results['extracted_attributes'] = ocr_attrs
-
- # Format OCR text for combining with product text
- ocr_text = "\n".join([
- f"{item['text']} (confidence: {item['confidence']:.2f})"
- for item in ocr_results['detected_text']
- ])
-
- # Combine all product information with source tracking
- product_text, source_map = ProductAttributeService.combine_product_text(
- title=product_data.get('title'),
- short_desc=product_data.get('short_desc'),
- long_desc=product_data.get('long_desc'),
- ocr_text=ocr_text
- )
-
- # Extract attributes from combined text with enhanced features
- result = ProductAttributeService.extract_attributes(
- product_text=product_text,
- mandatory_attrs=mandatory_attrs,
- source_map=source_map,
- model=model,
- extract_additional=extract_additional,
- multiple=multiple,
- threshold_abs=threshold_abs,
- margin=margin,
- use_dynamic_thresholds=use_dynamic_thresholds,
- use_adaptive_margin=use_adaptive_margin,
- use_semantic_clustering=use_semantic_clustering
- )
-
- result['product_id'] = product_id
-
- # Add OCR results if available (already in correct format)
- if ocr_results:
- result['ocr_results'] = ocr_results
-
- # Check if extraction was successful
- if 'error' not in result:
- return result, True
- else:
- return result, False
-
- except Exception as e:
- return {
- 'product_id': product_id,
- 'mandatory': {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- 'additional': {} if extract_additional else None,
- 'error': f"Processing error: {str(e)}"
- }, False
- # Process products in parallel
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
- future_to_product = {
- executor.submit(process_product, product): product
- for product in products
- }
-
- for future in as_completed(future_to_product):
- try:
- result, success = future.result()
- results.append(result)
- if success:
- successful += 1
- else:
- failed += 1
- except Exception as e:
- failed += 1
- results.append({
- 'product_id': 'unknown',
- 'mandatory': {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- 'additional': {} if extract_additional else None,
- 'error': f"Unexpected error: {str(e)}"
- })
- return {
- 'results': results,
- 'total_products': len(products),
- 'successful': successful,
- 'failed': failed
- }
- @staticmethod
- def _clean_json_response(text: str) -> str:
- """Clean LLM response to extract valid JSON."""
- start_idx = text.find('{')
- end_idx = text.rfind('}')
- if start_idx != -1 and end_idx != -1:
- text = text[start_idx:end_idx + 1]
- if "```json" in text:
- text = text.split("```json")[1].split("```")[0].strip()
- elif "```" in text:
- text = text.split("```")[1].split("```")[0].strip()
- if text.startswith("json"):
- text = text[4:].strip()
- return text
- @staticmethod
- def _validate_response_structure(
- parsed: dict,
- mandatory_attrs: Dict[str, List[str]],
- extract_additional: bool,
- source_map: Dict[str, str] = None
- ) -> dict:
- """Validate and fix the response structure, ensuring array format with source tracking."""
- if source_map is None:
- source_map = {}
-
- expected_sections = ["mandatory"]
- if extract_additional:
- expected_sections.append("additional")
- if not all(section in parsed for section in expected_sections):
- if isinstance(parsed, dict):
- mandatory_keys = set(mandatory_attrs.keys())
- mandatory = {k: v for k, v in parsed.items() if k in mandatory_keys}
- additional = {k: v for k, v in parsed.items() if k not in mandatory_keys}
- result = {"mandatory": mandatory}
- if extract_additional:
- result["additional"] = additional
- parsed = result
- else:
- return ProductAttributeService._create_error_response(
- "Invalid response structure",
- mandatory_attrs,
- extract_additional,
- str(parsed)
- )
- # Convert mandatory attributes to array format with source tracking
- if "mandatory" in parsed:
- converted_mandatory = {}
- for attr, value in parsed["mandatory"].items():
- if isinstance(value, list):
- # Already in array format, ensure each item has source
- converted_mandatory[attr] = []
- for item in value:
- if isinstance(item, dict) and "value" in item:
- # Already has proper structure
- if "source" not in item:
- item["source"] = ProductAttributeService.find_value_source(
- item["value"], source_map, attr
- )
- converted_mandatory[attr].append(item)
- else:
- # Convert string to proper format
- source = ProductAttributeService.find_value_source(str(item), source_map, attr)
- converted_mandatory[attr].append({"value": str(item), "source": source})
- else:
- # Single value - convert to array format
- source = ProductAttributeService.find_value_source(str(value), source_map, attr)
- converted_mandatory[attr] = [{"value": str(value), "source": source}]
-
- parsed["mandatory"] = converted_mandatory
- return parsed
- @staticmethod
- def _create_error_response(
- error: str,
- mandatory_attrs: Dict[str, List[str]],
- extract_additional: bool,
- raw_output: Optional[str] = None
- ) -> dict:
- """Create a standardized error response in array format."""
- response = {
- "mandatory": {attr: [{"value": "Not Specified", "source": "error"}] for attr in mandatory_attrs.keys()},
- "error": error
- }
- if extract_additional:
- response["additional"] = {}
- if raw_output:
- response["raw_output"] = raw_output
- return response
|