| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- from torch.utils.data import Dataset
- from torchvision.datasets.utils import download_url
- from PIL import Image
- import torch
- import numpy as np
- import random
- import decord
- from decord import VideoReader
- import json
- import os
- from data.utils import pre_caption
- decord.bridge.set_bridge("torch")
- class ImageNorm(object):
- """Apply Normalization to Image Pixels on GPU
- """
- def __init__(self, mean, std):
- self.mean = torch.tensor(mean).view(1, 3, 1, 1)
- self.std = torch.tensor(std).view(1, 3, 1, 1)
-
- def __call__(self, img):
- if torch.max(img) > 1 and self.mean.max() <= 1:
- img.div_(255.)
- return img.sub_(self.mean).div_(self.std)
- def load_jsonl(filename):
- with open(filename, "r") as f:
- return [json.loads(l.strip("\n")) for l in f.readlines()]
-
-
- class VideoDataset(Dataset):
- def __init__(self, video_root, ann_root, num_frm=4, frm_sampling_strategy="rand", max_img_size=384, video_fmt='.mp4'):
- '''
- image_root (string): Root directory of video
- ann_root (string): directory to store the annotation file
- '''
- url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/msrvtt_test.jsonl'
- filename = 'msrvtt_test.jsonl'
- download_url(url,ann_root)
- self.annotation = load_jsonl(os.path.join(ann_root,filename))
-
- self.num_frm = num_frm
- self.frm_sampling_strategy = frm_sampling_strategy
- self.max_img_size = max_img_size
- self.video_root = video_root
- self.video_fmt = video_fmt
- self.img_norm = ImageNorm(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
- self.text = [pre_caption(ann['caption'],40) for ann in self.annotation]
- self.txt2video = [i for i in range(len(self.annotation))]
- self.video2txt = self.txt2video
-
-
- def __len__(self):
- return len(self.annotation)
- def __getitem__(self, index):
- ann = self.annotation[index]
- video_path = os.path.join(self.video_root, ann['clip_name'] + self.video_fmt)
- vid_frm_array = self._load_video_from_path_decord(video_path, height=self.max_img_size, width=self.max_img_size)
- video = self.img_norm(vid_frm_array.float())
-
- return video, ann['clip_name']
-
- def _load_video_from_path_decord(self, video_path, height=None, width=None, start_time=None, end_time=None, fps=-1):
- try:
- if not height or not width:
- vr = VideoReader(video_path)
- else:
- vr = VideoReader(video_path, width=width, height=height)
- vlen = len(vr)
- if start_time or end_time:
- assert fps > 0, 'must provide video fps if specifying start and end time.'
- start_idx = min(int(start_time * fps), vlen)
- end_idx = min(int(end_time * fps), vlen)
- else:
- start_idx, end_idx = 0, vlen
- if self.frm_sampling_strategy == 'uniform':
- frame_indices = np.arange(start_idx, end_idx, vlen / self.num_frm, dtype=int)
- elif self.frm_sampling_strategy == 'rand':
- frame_indices = sorted(random.sample(range(vlen), self.num_frm))
- elif self.frm_sampling_strategy == 'headtail':
- frame_indices_head = sorted(random.sample(range(vlen // 2), self.num_frm // 2))
- frame_indices_tail = sorted(random.sample(range(vlen // 2, vlen), self.num_frm // 2))
- frame_indices = frame_indices_head + frame_indices_tail
- else:
- raise NotImplementedError('Invalid sampling strategy {} '.format(self.frm_sampling_strategy))
- raw_sample_frms = vr.get_batch(frame_indices)
- except Exception as e:
- return None
- raw_sample_frms = raw_sample_frms.permute(0, 3, 1, 2)
- return raw_sample_frms
|