| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- '''
- * Copyright (c) 2022, salesforce.com, inc.
- * All rights reserved.
- * SPDX-License-Identifier: BSD-3-Clause
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
- * By Junnan Li
- '''
- import argparse
- import os
- import ruamel_yaml as yaml
- import numpy as np
- import random
- import time
- import datetime
- import json
- from pathlib import Path
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.backends.cudnn as cudnn
- import torch.distributed as dist
- from torch.utils.data import DataLoader
- from models.blip_retrieval import blip_retrieval
- import utils
- from data.video_dataset import VideoDataset
- @torch.no_grad()
- def evaluation(model, data_loader, tokenizer, device, config):
- # test
- model.eval()
-
- metric_logger = utils.MetricLogger(delimiter=" ")
- header = 'Evaluation:'
-
- print('Computing features for evaluation...')
- start_time = time.time()
- texts = data_loader.dataset.text
- num_text = len(texts)
- text_bs = 256
- text_ids = []
- text_embeds = []
- text_atts = []
- for i in range(0, num_text, text_bs):
- text = texts[i: min(num_text, i+text_bs)]
- text_input = tokenizer(text, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(device)
- text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask, mode='text')
- text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:,0,:]))
- text_embeds.append(text_embed)
- text_ids.append(text_input.input_ids)
- text_atts.append(text_input.attention_mask)
-
- text_embeds = torch.cat(text_embeds,dim=0)
- text_ids = torch.cat(text_ids,dim=0)
- text_atts = torch.cat(text_atts,dim=0)
- text_ids[:,0] = tokenizer.additional_special_tokens_ids[0]
-
- video_feats = []
- video_embeds = []
- for video, video_id in data_loader:
- B,N,C,W,H = video.size()
- video = video.view(-1,C,W,H)
- video = video.to(device,non_blocking=True)
- video_feat = model.visual_encoder(video)
- video_embed = model.vision_proj(video_feat[:,0,:])
- video_embed = video_embed.view(B,N,-1).mean(dim=1)
- video_embed = F.normalize(video_embed,dim=-1)
-
- video_feat = video_feat.view(B,-1,video_feat.shape[-1])
- video_feats.append(video_feat.cpu())
- video_embeds.append(video_embed)
-
- video_feats = torch.cat(video_feats,dim=0)
- video_embeds = torch.cat(video_embeds,dim=0)
-
- sims_matrix = video_embeds @ text_embeds.t()
- score_matrix_v2t = torch.full((len(texts),len(texts)),-100.0).to(device)
-
- num_tasks = utils.get_world_size()
- rank = utils.get_rank()
- step = sims_matrix.size(0)//num_tasks + 1
- start = rank*step
- end = min(sims_matrix.size(0),start+step)
- for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
- topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
-
- encoder_output = video_feats[start+i].repeat(config['k_test'],1,1).to(device,non_blocking=True)
- encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device,non_blocking=True)
- output = model.text_encoder(text_ids[topk_idx],
- attention_mask = text_atts[topk_idx],
- encoder_hidden_states = encoder_output,
- encoder_attention_mask = encoder_att,
- return_dict = True,
- )
- score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
- score_matrix_v2t[start+i,topk_idx] = score + topk_sim
-
- sims_matrix = sims_matrix.t()
- score_matrix_t2v = torch.full((len(texts),len(texts)),-100.0).to(device)
-
- step = sims_matrix.size(0)//num_tasks + 1
- start = rank*step
- end = min(sims_matrix.size(0),start+step)
-
- for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
-
- topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
- encoder_output = video_feats[topk_idx].to(device,non_blocking=True)
- encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device,non_blocking=True)
- output = model.text_encoder(text_ids[start+i].repeat(config['k_test'],1),
- attention_mask = text_atts[start+i].repeat(config['k_test'],1),
- encoder_hidden_states = encoder_output,
- encoder_attention_mask = encoder_att,
- return_dict = True,
- )
- score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
- score_matrix_t2v[start+i,topk_idx] = score + topk_sim
- if args.distributed:
- dist.barrier()
- torch.distributed.all_reduce(score_matrix_v2t, op=torch.distributed.ReduceOp.SUM)
- torch.distributed.all_reduce(score_matrix_t2v, op=torch.distributed.ReduceOp.SUM)
-
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print('Evaluation time {}'.format(total_time_str))
- return score_matrix_v2t.cpu().numpy(), score_matrix_t2v.cpu().numpy()
-
- @torch.no_grad()
- def itm_eval(scores_v2t, scores_t2v, txt2vmg, vid2txt):
-
- #Video->Text
- ranks = np.zeros(scores_v2t.shape[0])
- for index,score in enumerate(scores_v2t):
- inds = np.argsort(score)[::-1]
- ranks[index] = np.where(inds == vid2txt[index])[0][0]
- # Compute metrics
- tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
- tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
- tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
-
- #Text->Video
- ranks = np.zeros(scores_t2v.shape[0])
-
- for index,score in enumerate(scores_t2v):
- inds = np.argsort(score)[::-1]
- ranks[index] = np.where(inds == txt2vmg[index])[0][0]
-
- mdR = np.median(ranks+1)
-
- # Compute metrics
- vr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
- vr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
- vr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
- tr_mean = (tr1 + tr5 + tr10) / 3
- vr_mean = (vr1 + vr5 + vr10) / 3
- r_mean = (tr_mean + vr_mean) / 2
- eval_result = {'txt_r1': tr1,
- 'txt_r5': tr5,
- 'txt_r10': tr10,
- 'txt_r_mean': tr_mean,
- 'vid_r1': vr1,
- 'vid_r5': vr5,
- 'vid_r10': vr10,
- 'vid_r_mean': vr_mean,
- 'vid_mdR': mdR,
- 'r_mean': r_mean}
- return eval_result
- def main(args, config):
- utils.init_distributed_mode(args)
-
- device = torch.device(args.device)
- # fix the seed for reproducibility
- seed = args.seed + utils.get_rank()
- torch.manual_seed(seed)
- np.random.seed(seed)
- random.seed(seed)
- cudnn.benchmark = True
- #### Dataset ####
- print("Creating retrieval dataset")
- test_dataset = VideoDataset(config['video_root'],config['ann_root'],num_frm=config['num_frm_test'],
- max_img_size=config['image_size'], frm_sampling_strategy='uniform')
- test_loader = DataLoader(
- test_dataset,
- batch_size=config['batch_size'],
- num_workers=4,
- pin_memory=True,
- drop_last=False,
- shuffle=False,
- )
- #### Model ####
- print("Creating model")
- model = blip_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'])
-
- model = model.to(device)
-
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
-
- score_v2t, score_t2v, = evaluation(model_without_ddp, test_loader, model_without_ddp.tokenizer, device, config)
- if utils.is_main_process():
- test_result = itm_eval(score_v2t, score_t2v, test_loader.dataset.txt2video, test_loader.dataset.video2txt)
- print(test_result)
- log_stats = {**{f'{k}': v for k, v in test_result.items()},}
- with open(os.path.join(args.output_dir, "test_result.txt"),"a") as f:
- f.write(json.dumps(log_stats) + "\n")
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--config', default='./configs/retrieval_msrvtt.yaml')
- parser.add_argument('--output_dir', default='output/Retrieval_msrvtt')
- parser.add_argument('--device', default='cuda')
- parser.add_argument('--seed', default=42, type=int)
- parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
- parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
- parser.add_argument('--distributed', default=True, type=bool)
- args = parser.parse_args()
- config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
- Path(args.output_dir).mkdir(parents=True, exist_ok=True)
-
- yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
-
- main(args, config)
|