| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- '''
- * Copyright (c) 2022, salesforce.com, inc.
- * All rights reserved.
- * SPDX-License-Identifier: BSD-3-Clause
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
- * By Junnan Li
- '''
- import warnings
- warnings.filterwarnings("ignore")
- from models.vit import VisionTransformer, interpolate_pos_embed
- from models.med import BertConfig, BertModel, BertLMHeadModel
- from transformers import BertTokenizer
- import torch
- from torch import nn
- import torch.nn.functional as F
- import os
- from urllib.parse import urlparse
- from timm.models.hub import download_cached_file
- class BLIP_Base(nn.Module):
- def __init__(self,
- med_config = 'configs/med_config.json',
- image_size = 224,
- vit = 'base',
- vit_grad_ckpt = False,
- vit_ckpt_layer = 0,
- ):
- """
- Args:
- med_config (str): path for the mixture of encoder-decoder model's configuration file
- image_size (int): input image size
- vit (str): model size of vision transformer
- """
- super().__init__()
-
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
- self.tokenizer = init_tokenizer()
- med_config = BertConfig.from_json_file(med_config)
- med_config.encoder_width = vision_width
- self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
-
- def forward(self, image, caption, mode):
-
- assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
- text = self.tokenizer(caption, return_tensors="pt").to(image.device)
-
- if mode=='image':
- # return image features
- image_embeds = self.visual_encoder(image)
- return image_embeds
-
- elif mode=='text':
- # return text features
- text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
- return_dict = True, mode = 'text')
- return text_output.last_hidden_state
-
- elif mode=='multimodal':
- # return multimodel features
- image_embeds = self.visual_encoder(image)
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
-
- text.input_ids[:,0] = self.tokenizer.enc_token_id
- output = self.text_encoder(text.input_ids,
- attention_mask = text.attention_mask,
- encoder_hidden_states = image_embeds,
- encoder_attention_mask = image_atts,
- return_dict = True,
- )
- return output.last_hidden_state
-
- current_dir = os.path.dirname(__file__)
- default_config_path = os.path.join(current_dir, '..', 'configs', 'med_config.json')
- class BLIP_Decoder(nn.Module):
- def __init__(self,
- med_config = default_config_path,
- image_size = 384,
- vit = 'base',
- vit_grad_ckpt = False,
- vit_ckpt_layer = 0,
- prompt = 'a picture of ',
- ):
- """
- Args:
- med_config (str): path for the mixture of encoder-decoder model's configuration file
- image_size (int): input image size
- vit (str): model size of vision transformer
- """
- super().__init__()
-
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
- self.tokenizer = init_tokenizer()
- med_config = BertConfig.from_json_file(med_config)
- med_config.encoder_width = vision_width
- self.text_decoder = BertLMHeadModel(config=med_config)
-
- self.prompt = prompt
- self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
-
- def forward(self, image, caption):
-
- image_embeds = self.visual_encoder(image)
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
-
- text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
-
- text.input_ids[:,0] = self.tokenizer.bos_token_id
-
- decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
- decoder_targets[:,:self.prompt_length] = -100
-
- decoder_output = self.text_decoder(text.input_ids,
- attention_mask = text.attention_mask,
- encoder_hidden_states = image_embeds,
- encoder_attention_mask = image_atts,
- labels = decoder_targets,
- return_dict = True,
- )
- loss_lm = decoder_output.loss
-
- return loss_lm
-
- def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
- image_embeds = self.visual_encoder(image)
- if not sample:
- image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
-
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
- model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
-
- prompt = [self.prompt] * image.size(0)
- input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
- input_ids[:,0] = self.tokenizer.bos_token_id
- input_ids = input_ids[:, :-1]
- if sample:
- #nucleus sampling
- outputs = self.text_decoder.generate(input_ids=input_ids,
- max_length=max_length,
- min_length=min_length,
- do_sample=True,
- top_p=top_p,
- num_return_sequences=1,
- eos_token_id=self.tokenizer.sep_token_id,
- pad_token_id=self.tokenizer.pad_token_id,
- repetition_penalty=1.1,
- **model_kwargs)
- else:
- #beam search
- outputs = self.text_decoder.generate(input_ids=input_ids,
- max_length=max_length,
- min_length=min_length,
- num_beams=num_beams,
- eos_token_id=self.tokenizer.sep_token_id,
- pad_token_id=self.tokenizer.pad_token_id,
- repetition_penalty=repetition_penalty,
- **model_kwargs)
-
- captions = []
- for output in outputs:
- caption = self.tokenizer.decode(output, skip_special_tokens=True)
- captions.append(caption[len(self.prompt):])
- return captions
-
- def blip_decoder(pretrained='',**kwargs):
- model = BLIP_Decoder(**kwargs)
- if pretrained:
- model,msg = load_checkpoint(model,pretrained)
- print("Missing keys:", msg.missing_keys)
- assert(len(msg.missing_keys)==0)
- return model
-
- def blip_feature_extractor(pretrained='',**kwargs):
- model = BLIP_Base(**kwargs)
- if pretrained:
- model,msg = load_checkpoint(model,pretrained)
- assert(len(msg.missing_keys)==0)
- return model
- def init_tokenizer():
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
- tokenizer.add_special_tokens({'bos_token':'[DEC]'})
- tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
- tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
- return tokenizer
- def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
-
- assert vit in ['base', 'large'], "vit parameter must be base or large"
- if vit=='base':
- vision_width = 768
- visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
- num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
- drop_path_rate=0 or drop_path_rate
- )
- elif vit=='large':
- vision_width = 1024
- visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
- num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
- drop_path_rate=0.1 or drop_path_rate
- )
- return visual_encoder, vision_width
- def is_url(url_or_filename):
- parsed = urlparse(url_or_filename)
- return parsed.scheme in ("http", "https")
- def load_checkpoint(model,url_or_filename):
- if is_url(url_or_filename):
- cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
- checkpoint = torch.load(cached_file, map_location='cpu')
- elif os.path.isfile(url_or_filename):
- checkpoint = torch.load(url_or_filename, map_location='cpu')
- else:
- raise RuntimeError('checkpoint url or path is invalid')
-
- state_dict = checkpoint['model']
-
- state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
- if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
- state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
- model.visual_encoder_m)
- for key in model.state_dict().keys():
- if key in state_dict.keys():
- if state_dict[key].shape!=model.state_dict()[key].shape:
- del state_dict[key]
-
- msg = model.load_state_dict(state_dict,strict=False)
- print('load checkpoint from %s'%url_or_filename)
- return model,msg
-
|