| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- from models.med import BertConfig
- from models.nlvr_encoder import BertModel
- from models.vit import interpolate_pos_embed
- from models.blip import create_vit, init_tokenizer, is_url
- from timm.models.hub import download_cached_file
- import torch
- from torch import nn
- import torch.nn.functional as F
- from transformers import BertTokenizer
- import numpy as np
- class BLIP_NLVR(nn.Module):
- def __init__(self,
- med_config = 'configs/med_config.json',
- image_size = 480,
- vit = 'base',
- vit_grad_ckpt = False,
- vit_ckpt_layer = 0,
- ):
- """
- Args:
- med_config (str): path for the mixture of encoder-decoder model's configuration file
- image_size (int): input image size
- vit (str): model size of vision transformer
- """
- super().__init__()
-
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
- self.tokenizer = init_tokenizer()
- med_config = BertConfig.from_json_file(med_config)
- med_config.encoder_width = vision_width
- self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
-
- self.cls_head = nn.Sequential(
- nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
- nn.ReLU(),
- nn.Linear(self.text_encoder.config.hidden_size, 2)
- )
- def forward(self, image, text, targets, train=True):
-
- image_embeds = self.visual_encoder(image)
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
- image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
- text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device)
- text.input_ids[:,0] = self.tokenizer.enc_token_id
- output = self.text_encoder(text.input_ids,
- attention_mask = text.attention_mask,
- encoder_hidden_states = [image0_embeds,image1_embeds],
- encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
- image_atts[image0_embeds.size(0):]],
- return_dict = True,
- )
- hidden_state = output.last_hidden_state[:,0,:]
- prediction = self.cls_head(hidden_state)
- if train:
- loss = F.cross_entropy(prediction, targets)
- return loss
- else:
- return prediction
-
- def blip_nlvr(pretrained='',**kwargs):
- model = BLIP_NLVR(**kwargs)
- if pretrained:
- model,msg = load_checkpoint(model,pretrained)
- print("missing keys:")
- print(msg.missing_keys)
- return model
-
- def load_checkpoint(model,url_or_filename):
- if is_url(url_or_filename):
- cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
- checkpoint = torch.load(cached_file, map_location='cpu')
- elif os.path.isfile(url_or_filename):
- checkpoint = torch.load(url_or_filename, map_location='cpu')
- else:
- raise RuntimeError('checkpoint url or path is invalid')
- state_dict = checkpoint['model']
-
- state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
-
- for key in list(state_dict.keys()):
- if 'crossattention.self.' in key:
- new_key0 = key.replace('self','self0')
- new_key1 = key.replace('self','self1')
- state_dict[new_key0] = state_dict[key]
- state_dict[new_key1] = state_dict[key]
- elif 'crossattention.output.dense.' in key:
- new_key0 = key.replace('dense','dense0')
- new_key1 = key.replace('dense','dense1')
- state_dict[new_key0] = state_dict[key]
- state_dict[new_key1] = state_dict[key]
-
- msg = model.load_state_dict(state_dict,strict=False)
- print('load checkpoint from %s'%url_or_filename)
- return model,msg
-
|