| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- '''
- * Copyright (c) 2022, salesforce.com, inc.
- * All rights reserved.
- * SPDX-License-Identifier: BSD-3-Clause
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
- * By Junnan Li
- '''
- from models.med import BertConfig, BertModel, BertLMHeadModel
- from transformers import BertTokenizer
- import transformers
- transformers.logging.set_verbosity_error()
- import torch
- from torch import nn
- import torch.nn.functional as F
- from models.blip import create_vit, init_tokenizer, load_checkpoint
- class BLIP_Pretrain(nn.Module):
- def __init__(self,
- med_config = 'configs/bert_config.json',
- image_size = 224,
- vit = 'base',
- vit_grad_ckpt = False,
- vit_ckpt_layer = 0,
- embed_dim = 256,
- queue_size = 57600,
- momentum = 0.995,
- ):
- """
- Args:
- med_config (str): path for the mixture of encoder-decoder model's configuration file
- image_size (int): input image size
- vit (str): model size of vision transformer
- """
- super().__init__()
-
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
-
- if vit=='base':
- checkpoint = torch.hub.load_state_dict_from_url(
- url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
- map_location="cpu", check_hash=True)
- state_dict = checkpoint["model"]
- msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
- elif vit=='large':
- from timm.models.helpers import load_custom_pretrained
- from timm.models.vision_transformer import default_cfgs
- load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])
-
- self.tokenizer = init_tokenizer()
- encoder_config = BertConfig.from_json_file(med_config)
- encoder_config.encoder_width = vision_width
- self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
- self.text_encoder.resize_token_embeddings(len(self.tokenizer))
- text_width = self.text_encoder.config.hidden_size
-
- self.vision_proj = nn.Linear(vision_width, embed_dim)
- self.text_proj = nn.Linear(text_width, embed_dim)
- self.itm_head = nn.Linear(text_width, 2)
-
- # create momentum encoders
- self.visual_encoder_m, vision_width = create_vit(vit,image_size)
- self.vision_proj_m = nn.Linear(vision_width, embed_dim)
- self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)
- self.text_proj_m = nn.Linear(text_width, embed_dim)
-
- self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
- [self.vision_proj,self.vision_proj_m],
- [self.text_encoder,self.text_encoder_m],
- [self.text_proj,self.text_proj_m],
- ]
- self.copy_params()
- # create the queue
- self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
- self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
- self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
- self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
- self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
-
- self.queue_size = queue_size
- self.momentum = momentum
- self.temp = nn.Parameter(0.07*torch.ones([]))
-
- # create the decoder
- decoder_config = BertConfig.from_json_file(med_config)
- decoder_config.encoder_width = vision_width
- self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)
- self.text_decoder.resize_token_embeddings(len(self.tokenizer))
- tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
-
-
- def forward(self, image, caption, alpha):
- with torch.no_grad():
- self.temp.clamp_(0.001,0.5)
-
- image_embeds = self.visual_encoder(image)
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
- image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
-
- text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30,
- return_tensors="pt").to(image.device)
- text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
- return_dict = True, mode = 'text')
- text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
-
- # get momentum features
- with torch.no_grad():
- self._momentum_update()
- image_embeds_m = self.visual_encoder_m(image)
- image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
- image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
-
- text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
- return_dict = True, mode = 'text')
- text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
- text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
- sim_i2t_m = image_feat_m @ text_feat_all / self.temp
- sim_t2i_m = text_feat_m @ image_feat_all / self.temp
- sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
- sim_targets.fill_diagonal_(1)
- sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
- sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
- sim_i2t = image_feat @ text_feat_all / self.temp
- sim_t2i = text_feat @ image_feat_all / self.temp
-
- loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
- loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
- loss_ita = (loss_i2t+loss_t2i)/2
- self._dequeue_and_enqueue(image_feat_m, text_feat_m)
- ###============== Image-text Matching ===================###
- encoder_input_ids = text.input_ids.clone()
- encoder_input_ids[:,0] = self.tokenizer.enc_token_id
-
- # forward the positve image-text pair
- bs = image.size(0)
- output_pos = self.text_encoder(encoder_input_ids,
- attention_mask = text.attention_mask,
- encoder_hidden_states = image_embeds,
- encoder_attention_mask = image_atts,
- return_dict = True,
- )
- with torch.no_grad():
- weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4
- weights_t2i.fill_diagonal_(0)
- weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4
- weights_i2t.fill_diagonal_(0)
-
- # select a negative image for each text
- image_embeds_neg = []
- for b in range(bs):
- neg_idx = torch.multinomial(weights_t2i[b], 1).item()
- image_embeds_neg.append(image_embeds[neg_idx])
- image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
- # select a negative text for each image
- text_ids_neg = []
- text_atts_neg = []
- for b in range(bs):
- neg_idx = torch.multinomial(weights_i2t[b], 1).item()
- text_ids_neg.append(encoder_input_ids[neg_idx])
- text_atts_neg.append(text.attention_mask[neg_idx])
- text_ids_neg = torch.stack(text_ids_neg,dim=0)
- text_atts_neg = torch.stack(text_atts_neg,dim=0)
- text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
- text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
- image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
- image_atts_all = torch.cat([image_atts,image_atts],dim=0)
- output_neg = self.text_encoder(text_ids_all,
- attention_mask = text_atts_all,
- encoder_hidden_states = image_embeds_all,
- encoder_attention_mask = image_atts_all,
- return_dict = True,
- )
- vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
- vl_output = self.itm_head(vl_embeddings)
- itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
- dim=0).to(image.device)
- loss_itm = F.cross_entropy(vl_output, itm_labels)
-
- ##================= LM ========================##
- decoder_input_ids = text.input_ids.clone()
- decoder_input_ids[:,0] = self.tokenizer.bos_token_id
- decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
- decoder_output = self.text_decoder(decoder_input_ids,
- attention_mask = text.attention_mask,
- encoder_hidden_states = image_embeds,
- encoder_attention_mask = image_atts,
- labels = decoder_targets,
- return_dict = True,
- )
-
- loss_lm = decoder_output.loss
- return loss_ita, loss_itm, loss_lm
-
- @torch.no_grad()
- def copy_params(self):
- for model_pair in self.model_pairs:
- for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
- param_m.data.copy_(param.data) # initialize
- param_m.requires_grad = False # not update by gradient
-
- @torch.no_grad()
- def _momentum_update(self):
- for model_pair in self.model_pairs:
- for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
- param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
-
- @torch.no_grad()
- def _dequeue_and_enqueue(self, image_feat, text_feat):
- # gather keys before updating queue
- image_feats = concat_all_gather(image_feat)
- text_feats = concat_all_gather(text_feat)
- batch_size = image_feats.shape[0]
- ptr = int(self.queue_ptr)
- assert self.queue_size % batch_size == 0 # for simplicity
- # replace the keys at ptr (dequeue and enqueue)
- self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
- self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
- ptr = (ptr + batch_size) % self.queue_size # move pointer
- self.queue_ptr[0] = ptr
- def blip_pretrain(**kwargs):
- model = BLIP_Pretrain(**kwargs)
- return model
- @torch.no_grad()
- def concat_all_gather(tensor):
- """
- Performs all_gather operation on the provided tensors.
- *** Warning ***: torch.distributed.all_gather has no gradient.
- """
- tensors_gather = [torch.ones_like(tensor)
- for _ in range(torch.distributed.get_world_size())]
- torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
- output = torch.cat(tensors_gather, dim=0)
- return output
- from typing import List
- def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
- uninitialized_encoder_weights: List[str] = []
- if decoder.__class__ != encoder.__class__:
- logger.info(
- f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
- )
- def tie_encoder_to_decoder_recursively(
- decoder_pointer: nn.Module,
- encoder_pointer: nn.Module,
- module_name: str,
- uninitialized_encoder_weights: List[str],
- skip_key: str,
- depth=0,
- ):
- assert isinstance(decoder_pointer, nn.Module) and isinstance(
- encoder_pointer, nn.Module
- ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
- if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
- assert hasattr(encoder_pointer, "weight")
- encoder_pointer.weight = decoder_pointer.weight
- if hasattr(decoder_pointer, "bias"):
- assert hasattr(encoder_pointer, "bias")
- encoder_pointer.bias = decoder_pointer.bias
- print(module_name+' is tied')
- return
- encoder_modules = encoder_pointer._modules
- decoder_modules = decoder_pointer._modules
- if len(decoder_modules) > 0:
- assert (
- len(encoder_modules) > 0
- ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
- all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
- encoder_layer_pos = 0
- for name, module in decoder_modules.items():
- if name.isdigit():
- encoder_name = str(int(name) + encoder_layer_pos)
- decoder_name = name
- if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
- encoder_modules
- ) != len(decoder_modules):
- # this can happen if the name corresponds to the position in a list module list of layers
- # in this case the decoder has added a cross-attention that the encoder does not have
- # thus skip this step and subtract one layer pos from encoder
- encoder_layer_pos -= 1
- continue
- elif name not in encoder_modules:
- continue
- elif depth > 500:
- raise ValueError(
- "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
- )
- else:
- decoder_name = encoder_name = name
- tie_encoder_to_decoder_recursively(
- decoder_modules[decoder_name],
- encoder_modules[encoder_name],
- module_name + "/" + name,
- uninitialized_encoder_weights,
- skip_key,
- depth=depth + 1,
- )
- all_encoder_weights.remove(module_name + "/" + encoder_name)
- uninitialized_encoder_weights += list(all_encoder_weights)
- # tie weights recursively
- tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
|