| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- '''
- * Copyright (c) 2022, salesforce.com, inc.
- * All rights reserved.
- * SPDX-License-Identifier: BSD-3-Clause
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
- * By Junnan Li
- '''
- import argparse
- import os
- import ruamel_yaml as yaml
- import numpy as np
- import random
- import time
- import datetime
- import json
- from pathlib import Path
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.backends.cudnn as cudnn
- import torch.distributed as dist
- from torch.utils.data import DataLoader
- from models.blip_pretrain import blip_pretrain
- import utils
- from utils import warmup_lr_schedule, step_lr_schedule
- from data import create_dataset, create_sampler, create_loader
- def train(model, data_loader, optimizer, epoch, device, config):
- # train
- model.train()
-
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
- metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
- metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
- metric_logger.add_meter('loss_lm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
-
- header = 'Train Epoch: [{}]'.format(epoch)
- print_freq = 50
- if config['laion_path']:
- data_loader.dataset.reload_laion(epoch)
-
- data_loader.sampler.set_epoch(epoch)
- for i, (image, caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
-
- if epoch==0:
- warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
-
- optimizer.zero_grad()
-
- image = image.to(device,non_blocking=True)
-
- # ramp up alpha in the first 2 epochs
- alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader)))
- loss_ita, loss_itm, loss_lm = model(image, caption, alpha = alpha)
- loss = loss_ita + loss_itm + loss_lm
- loss.backward()
- optimizer.step()
- metric_logger.update(loss_ita=loss_ita.item())
- metric_logger.update(loss_itm=loss_itm.item())
- metric_logger.update(loss_lm=loss_lm.item())
- metric_logger.update(lr=optimizer.param_groups[0]["lr"])
-
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger.global_avg())
- return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
- def main(args, config):
- utils.init_distributed_mode(args)
-
- device = torch.device(args.device)
- # fix the seed for reproducibility
- seed = args.seed + utils.get_rank()
- torch.manual_seed(seed)
- np.random.seed(seed)
- random.seed(seed)
- cudnn.benchmark = True
- #### Dataset ####
- print("Creating dataset")
- datasets = [create_dataset('pretrain', config, min_scale=0.2)]
- print('number of training samples: %d'%len(datasets[0]))
- num_tasks = utils.get_world_size()
- global_rank = utils.get_rank()
- samplers = create_sampler(datasets, [True], num_tasks, global_rank)
- data_loader = create_loader(datasets,samplers,batch_size=[config['batch_size']], num_workers=[4], is_trains=[True], collate_fns=[None])[0]
- #### Model ####
- print("Creating model")
- model = blip_pretrain(image_size=config['image_size'], vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'],
- vit_ckpt_layer=config['vit_ckpt_layer'], queue_size=config['queue_size'])
- model = model.to(device)
- optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
-
- start_epoch = 0
- if args.checkpoint:
- checkpoint = torch.load(args.checkpoint, map_location='cpu')
- state_dict = checkpoint['model']
- model.load_state_dict(state_dict)
-
- optimizer.load_state_dict(checkpoint['optimizer'])
- start_epoch = checkpoint['epoch']+1
- print('resume checkpoint from %s'%args.checkpoint)
-
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
-
- print("Start training")
- start_time = time.time()
- for epoch in range(start_epoch, config['max_epoch']):
-
- step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
-
- train_stats = train(model, data_loader, optimizer, epoch, device, config)
- if utils.is_main_process():
- log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
- 'epoch': epoch,
- }
- save_obj = {
- 'model': model_without_ddp.state_dict(),
- 'optimizer': optimizer.state_dict(),
- 'config': config,
- 'epoch': epoch,
- }
- torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
-
- with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
- f.write(json.dumps(log_stats) + "\n")
- dist.barrier()
-
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print('Training time {}'.format(total_time_str))
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--config', default='./configs/pretrain.yaml')
- parser.add_argument('--output_dir', default='output/Pretrain')
- parser.add_argument('--checkpoint', default='')
- parser.add_argument('--evaluate', action='store_true')
- parser.add_argument('--device', default='cuda')
- parser.add_argument('--seed', default=42, type=int)
- parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
- parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
- parser.add_argument('--distributed', default=True, type=bool)
- args = parser.parse_args()
- config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
- Path(args.output_dir).mkdir(parents=True, exist_ok=True)
-
- yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
-
- main(args, config)
|