| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- import os
- import json
- import random
- from PIL import Image
- import torch
- from torch.utils.data import Dataset
- from data.utils import pre_question
- from torchvision.datasets.utils import download_url
- class vqa_dataset(Dataset):
- def __init__(self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"):
- self.split = split
- self.transform = transform
- self.vqa_root = vqa_root
- self.vg_root = vg_root
-
- if split=='train':
- urls = {'vqa_train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json',
- 'vqa_val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json',
- 'vg_qa':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json'}
-
- self.annotation = []
- for f in train_files:
- download_url(urls[f],ann_root)
- self.annotation += json.load(open(os.path.join(ann_root,'%s.json'%f),'r'))
- else:
- download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json',ann_root)
- self.annotation = json.load(open(os.path.join(ann_root,'vqa_test.json'),'r'))
-
- download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json',ann_root)
- self.answer_list = json.load(open(os.path.join(ann_root,'answer_list.json'),'r'))
-
-
- def __len__(self):
- return len(self.annotation)
-
- def __getitem__(self, index):
-
- ann = self.annotation[index]
-
- if ann['dataset']=='vqa':
- image_path = os.path.join(self.vqa_root,ann['image'])
- elif ann['dataset']=='vg':
- image_path = os.path.join(self.vg_root,ann['image'])
-
- image = Image.open(image_path).convert('RGB')
- image = self.transform(image)
-
- if self.split == 'test':
- question = pre_question(ann['question'])
- question_id = ann['question_id']
- return image, question, question_id
- elif self.split=='train':
-
- question = pre_question(ann['question'])
-
- if ann['dataset']=='vqa':
- answer_weight = {}
- for answer in ann['answer']:
- if answer in answer_weight.keys():
- answer_weight[answer] += 1/len(ann['answer'])
- else:
- answer_weight[answer] = 1/len(ann['answer'])
- answers = list(answer_weight.keys())
- weights = list(answer_weight.values())
- elif ann['dataset']=='vg':
- answers = [ann['answer']]
- weights = [0.2]
- return image, question, answers, weights
-
-
- def vqa_collate_fn(batch):
- image_list, question_list, answer_list, weight_list, n = [], [], [], [], []
- for image, question, answer, weights in batch:
- image_list.append(image)
- question_list.append(question)
- weight_list += weights
- answer_list += answer
- n.append(len(answer))
- return torch.stack(image_list,dim=0), question_list, answer_list, torch.Tensor(weight_list), n
|