vqa_dataset.py 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. import os
  2. import json
  3. import random
  4. from PIL import Image
  5. import torch
  6. from torch.utils.data import Dataset
  7. from data.utils import pre_question
  8. from torchvision.datasets.utils import download_url
  9. class vqa_dataset(Dataset):
  10. def __init__(self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"):
  11. self.split = split
  12. self.transform = transform
  13. self.vqa_root = vqa_root
  14. self.vg_root = vg_root
  15. if split=='train':
  16. urls = {'vqa_train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json',
  17. 'vqa_val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json',
  18. 'vg_qa':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json'}
  19. self.annotation = []
  20. for f in train_files:
  21. download_url(urls[f],ann_root)
  22. self.annotation += json.load(open(os.path.join(ann_root,'%s.json'%f),'r'))
  23. else:
  24. download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json',ann_root)
  25. self.annotation = json.load(open(os.path.join(ann_root,'vqa_test.json'),'r'))
  26. download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json',ann_root)
  27. self.answer_list = json.load(open(os.path.join(ann_root,'answer_list.json'),'r'))
  28. def __len__(self):
  29. return len(self.annotation)
  30. def __getitem__(self, index):
  31. ann = self.annotation[index]
  32. if ann['dataset']=='vqa':
  33. image_path = os.path.join(self.vqa_root,ann['image'])
  34. elif ann['dataset']=='vg':
  35. image_path = os.path.join(self.vg_root,ann['image'])
  36. image = Image.open(image_path).convert('RGB')
  37. image = self.transform(image)
  38. if self.split == 'test':
  39. question = pre_question(ann['question'])
  40. question_id = ann['question_id']
  41. return image, question, question_id
  42. elif self.split=='train':
  43. question = pre_question(ann['question'])
  44. if ann['dataset']=='vqa':
  45. answer_weight = {}
  46. for answer in ann['answer']:
  47. if answer in answer_weight.keys():
  48. answer_weight[answer] += 1/len(ann['answer'])
  49. else:
  50. answer_weight[answer] = 1/len(ann['answer'])
  51. answers = list(answer_weight.keys())
  52. weights = list(answer_weight.values())
  53. elif ann['dataset']=='vg':
  54. answers = [ann['answer']]
  55. weights = [0.2]
  56. return image, question, answers, weights
  57. def vqa_collate_fn(batch):
  58. image_list, question_list, answer_list, weight_list, n = [], [], [], [], []
  59. for image, question, answer, weights in batch:
  60. image_list.append(image)
  61. question_list.append(question)
  62. weight_list += weights
  63. answer_list += answer
  64. n.append(len(answer))
  65. return torch.stack(image_list,dim=0), question_list, answer_list, torch.Tensor(weight_list), n