blip_itm.py 3.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. from models.med import BertConfig, BertModel
  2. from transformers import BertTokenizer
  3. import torch
  4. from torch import nn
  5. import torch.nn.functional as F
  6. from models.blip import create_vit, init_tokenizer, load_checkpoint
  7. class BLIP_ITM(nn.Module):
  8. def __init__(self,
  9. med_config = 'configs/med_config.json',
  10. image_size = 384,
  11. vit = 'base',
  12. vit_grad_ckpt = False,
  13. vit_ckpt_layer = 0,
  14. embed_dim = 256,
  15. ):
  16. """
  17. Args:
  18. med_config (str): path for the mixture of encoder-decoder model's configuration file
  19. image_size (int): input image size
  20. vit (str): model size of vision transformer
  21. """
  22. super().__init__()
  23. self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
  24. self.tokenizer = init_tokenizer()
  25. med_config = BertConfig.from_json_file(med_config)
  26. med_config.encoder_width = vision_width
  27. self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
  28. text_width = self.text_encoder.config.hidden_size
  29. self.vision_proj = nn.Linear(vision_width, embed_dim)
  30. self.text_proj = nn.Linear(text_width, embed_dim)
  31. self.itm_head = nn.Linear(text_width, 2)
  32. def forward(self, image, caption, match_head='itm'):
  33. image_embeds = self.visual_encoder(image)
  34. image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
  35. text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
  36. return_tensors="pt").to(image.device)
  37. if match_head=='itm':
  38. output = self.text_encoder(text.input_ids,
  39. attention_mask = text.attention_mask,
  40. encoder_hidden_states = image_embeds,
  41. encoder_attention_mask = image_atts,
  42. return_dict = True,
  43. )
  44. itm_output = self.itm_head(output.last_hidden_state[:,0,:])
  45. return itm_output
  46. elif match_head=='itc':
  47. text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
  48. return_dict = True, mode = 'text')
  49. image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
  50. text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
  51. sim = image_feat @ text_feat.t()
  52. return sim
  53. def blip_itm(pretrained='',**kwargs):
  54. model = BLIP_ITM(**kwargs)
  55. if pretrained:
  56. model,msg = load_checkpoint(model,pretrained)
  57. assert(len(msg.missing_keys)==0)
  58. return model