| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- from models.med import BertConfig, BertModel
- from transformers import BertTokenizer
- import torch
- from torch import nn
- import torch.nn.functional as F
- from models.blip import create_vit, init_tokenizer, load_checkpoint
- class BLIP_ITM(nn.Module):
- def __init__(self,
- med_config = 'configs/med_config.json',
- image_size = 384,
- vit = 'base',
- vit_grad_ckpt = False,
- vit_ckpt_layer = 0,
- embed_dim = 256,
- ):
- """
- Args:
- med_config (str): path for the mixture of encoder-decoder model's configuration file
- image_size (int): input image size
- vit (str): model size of vision transformer
- """
- super().__init__()
-
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
- self.tokenizer = init_tokenizer()
- med_config = BertConfig.from_json_file(med_config)
- med_config.encoder_width = vision_width
- self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
- text_width = self.text_encoder.config.hidden_size
-
- self.vision_proj = nn.Linear(vision_width, embed_dim)
- self.text_proj = nn.Linear(text_width, embed_dim)
- self.itm_head = nn.Linear(text_width, 2)
-
-
- def forward(self, image, caption, match_head='itm'):
- image_embeds = self.visual_encoder(image)
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
-
- text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
- return_tensors="pt").to(image.device)
-
- if match_head=='itm':
- output = self.text_encoder(text.input_ids,
- attention_mask = text.attention_mask,
- encoder_hidden_states = image_embeds,
- encoder_attention_mask = image_atts,
- return_dict = True,
- )
- itm_output = self.itm_head(output.last_hidden_state[:,0,:])
- return itm_output
-
- elif match_head=='itc':
- text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
- return_dict = True, mode = 'text')
- image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
- text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
-
- sim = image_feat @ text_feat.t()
- return sim
-
-
- def blip_itm(pretrained='',**kwargs):
- model = BLIP_ITM(**kwargs)
- if pretrained:
- model,msg = load_checkpoint(model,pretrained)
- assert(len(msg.missing_keys)==0)
- return model
-
|